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ABSTRACT 

The f r ee  j e t  mixicg of p a r a l l e l  streams of d i f fe ren t  

f luids  i s  of fundamental importance and in t e re s t .  

degree of mixing depends on the regime of flow i n  the 

mixing region, i . e . ,  laminar o r  turbulent, and the velocity 

and density r a t io s .  

The 

I n  t h i s  work, s imi la r i ty  solutions were obtained f o r  

laminar and turbulent mixing of two parallel incompressible 

streams. The solutions apply t o  both similar and dis- 

similar f l u i d s  i n  the two streams with any velocity o r  

density r a t i o  and a rb i t r a ry  laminar o r  turbulent Schmidt 

numbers. 

A solution i s  numerical i n  nature and a set of 

solutions a re  presented i n  tabular  form for a spectrum of 

density, velocity and Schmidt numbers. 
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I INTRODJCTION 

The behavior of adjacent f ree  j e t s  has been of i n t e r e s t  

f o r  many years. Tollmein' i n  1926 f i rs t  considered analyt ical ly  

the mixing of  two p a r a l l e l  streams of f lu id .  The hydrodynamic 

s t a b i l i t y  of t h i s  type of flow was discussed by Lord Rayleigh' 

as ear ly  as 1880. 

The problem may be divided in to  two categories. I n  the 

f irst  category the two streams are  of the same f l u i d  and i n  

the second, the two streams a re  considered t o  be dissimilar 

f l u ids .  Flows i n  the f i r s t  category are referred t o  as being 

homogeneous, those i n  the second, a re  referred t o  as being 

heterogeneous. 

The homogeneous case i s  re la ted t o  s tudies  of j e t  engines 

and rockets exhausts, while i n t e r e s t  i n  the heterogeneous case 

has been mainly i n  the f i e l d s  of meteorology and oceanography 

where s o  cal led density s t r a t i f i e d  f l o w s  commonly occur. 

Recently, the concept of a gaseous core nuclear rocket has 

stimulated new in t e re s t  i n  the free  j e t  mixing of co-flowing 

streams o f  d i s s i m i l a r  f lu ids .  A bet ter  understanding of the 

fundamental problem of f ree  j e t  mixing, i . e . ,  mixing which 

takes place i n  the absence o f  sol id  boundaries, i s  needed f o r  

a l l  these problems. 

The object of t h i s  work i s  t o  obtain s imi la r i ty  solutions 

for the  laminar and turbulent mixing of two dissimilar streams. 

I n  both cases the nature of the solution i s  numerical rather 

than closed form and tables  of calculated r e su l t s  a re  

1 



presented covering the whole spectrum of parameter variation. 

The r e su l t s  are  discussed i n  conjunction with experimental 

r e su l t s  i n  Ref. 67. 

The ana ly t ica l  treatment applies only t o  the similar 

region of  the flow f i e l d  but no assumptions are made t o  limit 

density r a t i o  o r  Schmidt number i n  e i the r  the laminar o r  

turbulent case. 

2 



11. MCKGROUND 

11-1 Homogeneous Case 

The problem of laminar mixing i n  a ha l f - j e t  i s  usually 

considered i n  connection with a s t a b i l i t y  analysis.  

turbulent mixing problem i s  considered independently. 

cer ta in  instances the solutions of the laminar and the 

turbulent mixing problems are related. 

The 

I n  

Most ana ly t ica l  investigations o f  e l t he r  the laminar 

o r  the burbulent problem consider the i n i t i a l  velocity 

prof i les  t o  be shown i n  Fig.11-1.1. 

Each stream i s  assumed t o  have a plug flow velocity 

d is t r ibu t ion  and no account i s  taken of boundary layer 

development on the p la te  separating the  t v o  streams. 

ever, there have been some papers given which do take the 

in i t ia l  boundary layers i n t o  consideration. The m a i n  

advantage of ana ly t ica l ly  investigating an idealized 

velocity prof i le  such as tha t  shown above i s  that ,  while 

sacr i f ic ing  some generality, i t  allows similar solutions 

t o  be obtained which a re  convenient t o  use i n  s t a b i l i t y  

analyses and contain only one parameter t o  be determined 

experimentally in  the case o f  turbulent mixing. Whereas, 

those investigations which do consider the i n i t i a l  boundary 

layers  r e s u l t  i n  non-similar solutions with two o r  three 

parameters. The ini t ia l  boundary layer (s )  do in the real 

case de f in i t e ly  a f fec t  the f l o w  i n  the mixing region a 

short  distance downstream from the separating plate .  

How- 

3 



Among those investigations of the turbulent mixing 

problem which are  based on the idealized i n i t i a l  velocity 

profiles,  the main difference in  analyses has been i n  the 

expression chosen t o  represent the eddy viscosi ty  i n  the 

mixing region. 

turbulence have been proposed. 

theory, 37 Taylor s f r ee  turbulence theory, 38 Reichardt ! s 

theory of turbulent mixing"' and Prandtl '  s exchange coeff i- 

cient theory40 are  most widely used and successful. These 

are discussed i n  some d e t a i l  i n  Abramovich's work on 

turbulent jets.4' 

t h a t  tangential  s t resses  i n  turbulent flows are  caused by 

vor t ic i ty  t ransfer  and not by momentum t ransfer  as i n  

Prandtl' s mixing length hypothesis. However, the expression 

obtained f o r  the turbulent shearing s t r e s s  i s  the same f o r  

both models with only a difference i n  the numerical value 

of the mixing lengtho 

Several theories of so-called f r ee  

Prandtl! s mixing length 

Taylors model of turbulence assumes 

Reichardt s theory of turbulent mixing r e su l t s  i n  the 

reduction of the equations of motion t o  the form of the 

generalized heat conduction equation. It i s  not widely 

applicable. 

The most commonly used of these theories  a re  those 

of Prandtl.42 

by Prandtl  and by Tollmien* i n  t h e i r  investigations of the  

turbulent ha l f - j e t  problem and Prandt l ' s  exchange co- 

effTcient theory was used by Goertlers i n  h i s  analysis of 

the same problem. 

The mixing length theory of Prandtl  was used 

4 



Prandt14* used h i s  concept o f  the mixing length t o  

represent the apparent shearing stress of turbulent momentum 

interchange according t o  the relat ion 

11-1.1 

where R i s  the mixing length. 

Prandtl  considered the velocity p ro f i l e  shown i n  

11-1.1 t o  ex i s t  a t  time t equal t o  zero.  Figure With 

~ 

the assumptions 

u = u(y,t), v = 0 

i and using h i s  mixing length concept t o  represent the 

turbulent shearing s t ress ,  he wrote the momentum equation 

as 

11-1.2 

By assuming the mixing length R t o  be proportional t o  the 

width of  the mixing region b, where b = b(  t )  , and i n t r o -  

ducing a new independent variable 

and a new dependent variable 

I1 -1.3 
with 

5 



the quantity 

6 

is the only empirical constant to be obtained from experi- 

mental data. 

approach the free stream velocity asymptotically. 

The velocity in the mixing region does not 

At 

y = $ b  

the velocity reaches the free stream velocity with a 

discontinuity in 

Tollmien also considered the velocity profile shown 

in Figure 11-1.1. 

Stream 1 has constant velocity u1 and stream 2 constant 

velocity u2 with 

At x = 0, two parallel streams meet. 

Downstream a mixing region is formed in which the dis- 

continuity in velocity is mapped out. 

was f o r  the case of turbulent mixing with 

Tollmien's analysis 

Q 2 = 0  

i.e., a half-jet. 

For the two dimensional incompressible m i x i n g  region, 

the equations of continuity and momentum may be written 

11-1.4 

11-10 5 



6 

i 4 

x 
h 

I Free-jet mixing 

x =  0 Figure 11-1.1 

7 



Tollmien' integrated the equation of continuity by 

using a stream function and defined the stream function 

in  terms of the new variable 

e = Y/X 

i.e. 

Q = x F ( e )  11-1.6 

He used Prandt l ' s  mixing length hypothesis f o r  the tur -  

bulent shearing stress i n  the mixing region and assumed 

tha t  the mixing length i s  constant across each cross 

section and increases l inear ly  with x, i .e . ,  a = cx. 

Tollmien combined equations 11-1.6, 11-1.1 and 11-1.5 

to obtain the following d i f f e r e n t i a l  equation 

He pointed out t ha t  this i s  solved by 

o r  by 

F + ~ c ~ F ' "  = 0 11-1.9 

He s ta ted  tha t  equation I1 -1.9 applied between the 

l imi t s  

81 and 62 

and equation 11- 1.8 

Tollmien's solution was 

applied outside t k e  se limits. 

F = Cle-8 +- C 2 e  612 cos +e + C3e8/2 si.n 90 11-1. lo 

8 



L 

I , 
He then applied the following f ive  boundary conditions 

t o  solve f o r  the constants CL, C2, CS, e1 and 0 2 -  

F' (01) = 1 

F" ( e l )  = 0 

F' (e21 = 0 

F" ( e 2 >  = 0 

, 
i 
I 

F ( e l )  = el I1 -1.11 

Tol-Men's  solution agrees reasonably well  with the experi- 

mental data of  AlbertsonL4 and Liepmann and Laufer.I2 

main disadvantage of  his solution l i e s  i n  the f a c t  t ha t  

F"' 9 p> d2u i s  discontinuous a t  01 and e2 and the velocity 

i n  the mixing region does not asymptotically approach the 

f r ee  stream values. It w i l l  be recalled tha t  Prandt l ' s  

solution displayed these same character is t ics .  Schlichting 

points out t ha t  t h i s  i s  a general property of a l l  solutions 

based on Prandt l ' s  mixing length hypothesis and c a l l s  t h i s  

an e s t h e t i c a l  deficiency of  the hypothesis. 

The 

i 

Kuethe5 extended Tollmien's analysis t o  the case 

where 

u2 # 0 

His analysis  proceeded in  a mamner analogous t o  t ha t  of 

Tollmien except i n  the application of the f i f t h  boundary 

condition. Tollmien's f i f t h  boundary condition was 

F ( e l > =  e1 

which i s  equivalent t o  s ta t ing  that  the transverse 

ve loc i ty  i s  equal t o  zero. Kuethe's f i f t h  boundary 

9 



I1 -1.12 

where 

m = u2/u  

Kuethe s ta ted tha t  t h i s  condition was suggested by 

von Karman and corresponds t o  the assumption tha t  no external  

forces a re  acting on the t o t a l  f l u i d  system perpendicular 

t o  the main flow. 

o f  the mixing region nor the u-velocity prof i les  a re  a f fec t -  

ed by the use of t h i s  condition. However, the v-velocity 

prof i les  and 81 and e2 a re  affected an appreciable amount. 

Velocity prof i les  fo r  m = 0, 0.5 and 0.8 were given. 

He pointed out t ha t  neither the width 

Goertler" a lso considered the velocity p ro f i l e  shown 

in Figure 11-1.1. He used the equations of continuity 

and momentum as given by equations 11-1.4 and 11-1.5 

and defined the turbulent shearing s t r e s s  by 

11-1.14 

In t h i s  expression 

exchange coeff ic ient  and i s  given by 

i s  the eddy viscosi ty  o r  the turbulent 

11-1.15 

This i s  Prandt l ' s  exchange coef f ic ien t  hypothesis. 

t h i s  expression, b denotes the width of the mixing region 

a n d k i s  an empir.;cal constant. Goertler assumed t h a t  the 

In 

10 



. 
mixing region spreads l inear ly  with x , i. e., b = c x and 

tha t  the exchange coeff ic ient  does not vary across a cross 

section. Substi tuting equations 11-1.15 and 11-1.14 

in to  equation 11-1.5 and introducing a stream function 
~ 

I $I = X U F ( [ )  
I 

I Goertler obtained the following d i f f e ren t i a l  equation. 
I 

F"' + 20 FF" = 0 11-1-16 

11-1-17 

Goertler applied the following boundary conditions 

u F ' ( - )  = u/tT = 1 + 
u F ' ( 0 )  = u/tT = 1 

0 F'(-co) = U/?J = 1 - 
Ir -1.18 

where 

He solved equation 

expansion of the form 

11-1.16 by assuming a power se r i e s  

u F(5)  = F o ( [ )  + SI([) + X2F2([) + * - *  11. - 1.19 

Subst i tut ing t h i s  expression in to  equatj-on 

together with Fo=[ and equating coefficients of xn, he 

11 -1.16 

11 



. 

obtained d i f f e r e n t i a l  equations fo r  Fl ,  F2, e t c .  The 

equation fo r  F1 i s  

F1"' + 25Fr" = O 11-1.20 

The solution of t h i s  equation w i t h  the boundary conditions 

11-1.18 i s  

dz 2 s' e-Z2 ~ ~ ' ( 5 )  = erfg = - 
J7r 0 

o r  i n  terms of the velocity u 

e r f  u1 +u U l  -u u =  2 Z i  c1 + u1+u: 

11-1.21 

11- 1.22 5 1  

T h i s  solution i s  the f i r s t  order approximation t o  the exact 

solution. 

Goertler 's  velocity p ro f i l e  approaches the f r ee  

stream ve loc i t ies  asymptotically and there are  no dis- 

cont inui t ies  i n  any of the veloci ty  derivatives as i n  the 

case of P rand t l ' s  and Tollmein's solutions.  However, the 

independent variable i n  Goertler s solution i s  

5 = aY/X 

This means tha t  the x-axis should be the l i n e  5 = 0. 

according t o  Goert ler ' s  second boundary condition 

Then, 

along the x-axis o r  

u = 1 / 2 ( U l + U 2 )  

This i s  c lear ly  not t rue  from the  experimental data of 

Albertson14 and Liepmann and Iaufer.12 



A b r a m ~ v i c h ~ ~  points out t ha t  if  Goertler s theoret i -  

c a l  velocity p ro f i l e  i s  displaced so tha t  the boundary of 

the j e t  ( y  = 0 )  passes along the  l ine 5 = 0.3, then t h i s  

p ro f i l e  passes close t o  the experimental points. 

s t a t e s  t ha t  this means tha t  Goertler 's  theory requires two 

experimental constants (5 and 60, whereas Tollmien' s theory 

i s  made t o  correspond w i t h  the  data with the a i d  of only 

one experimental constant. 

He 

Yen38 c l a r i f i e d  the discrepancy discussed above by 

pointing out t ha t  Goertler 's  theore t ica l  velocity p ro f i l e  

i s  correct ly  placed with respect t o  the boundary o f  the 

j e t  by applying von K a r m a n ' s  boundary condri_tion, as 

discussed. i n  connection with the work of Kuethe, instead 

of the condition 

u F ' ( 0 )  = 1 

However, an e r ror  i n  Yen's analysis invalidated h i s  con- 

clusions except f o r  the case of 

u2 = o  

This w i l l  be discussed i n  greater  d e t a i l  i n  a l a t e r  section. 

Lessen,3 Chiarulli '  and Lin7 have solved this same 

, problem f o r  the case of laminar mixing i n  connection with 

t h e i r  s t a b i l i t y  analyses. 

be solved i s  

The d i f f e ren t i a l  equation t o  

f"' + 1/2ff" = 0 11-1-23 

13 



, 

where 

U f = f(q) = 

and 

, = y J - -  VX 

The boundary conditions a re  

f ' ( a l )  = 1 

fI(0) = 0.5 

f ' ( - m )  = 0 

11-1.24 

Lin7 points out t ha t  equation 11-1.23 together with 

boundary conditions 

equation f o r  turbulent mixing, equation 11-1.16, together 

with boundary conditions 

relat ions 

11-1.24 may be converted t o  Goert ler ' s  

11-1.18 by use of the following 

Thus the laminar solution and the turbulent solution of 

Goertler a re  re la ted through a transformation of variables.  

Chiarul l i  and Lin solved equation 11-1.23 f o r  = 0.2, 

0.4, 0.6, 0.8 and 1.0. E r r o r s  i n  the solution of Goertler 

were pointed out  and corrected. However, Goertler s solu- 

tion method was used. A s  previously mentioned, k s s e n  

used the method of analyt ic  continuation t o  numerically 

integrate equation 11-1.23 and obtain the solution. 

14 



I Crane44 has extended Goertler 's  analysis t o  the c9se 

of compressible flow with temperature difference. The 

width of the mixing region was shown t o  depend upon the 

difference of the stagnation enthalpies of the two streams 

and on the Mach numbers of the flow. 
~ 

I The e f fec t  of the in i t ia l  boundary layer development 

1 on the p la te  separating the two streams on the f l o w  p ro f i l e s  

i n  the mixing region has been considered by Torda, e t .  a1.,45 

Chapman and K o r ~ t ~ ~  and by Ackermann.47 

I 

Torda, e t .  al .  considered the turbulent, incompressible, 
~ I 

symmetric mixing of  two p a r a l l e l  streams; i . e . ,  both f r ee  

streams have the same velocity. The von Barman in t e rg ra l  

concept was applied t o  the momentum and energy equations t o  

evaluate the thickness of the mixing region and the velocity 

d is t r ibu t ion  i n  it. Velocity prof i les  were presented f o r  

three downstream positions. Also, curves showing the in- 

crease i n  width of the mixing region with distance down- 

stream were presented. 

amount o f  curvature in the region immediately behind the 

p l a t e  as opposed t o  s t ra ight  l i nes  obtained from the 

analyses of Tollmien, Kuethe and Goertler. It was pointed 

out t h a t  t h i s  i s  i n  qual i ta t ive agreement with the experi- 

ments of Lsipmann and Laufer. 

t 

These curves showed a considerable 

Chapman and Kors t  considered the problem of  f r ee - j e t  

mixing with the i n i t i a l  velocity dis t r ibut ion given by 

power l a w ,  power ser ies  and broken l ine  representation. 



A momentum in t eg ra l  method was applied t o  th.e l inearized 

equations of motion t o  obtain a solution. 

presentations f o r  the velocity dis t r ibut ion i n  the mixing 

region were given. 

Multi-parameter 

The laminar incompressible mixing of two streams of  

different ve loc i t ies  with consideration of the i n i t i a l  

boundary layers has been considered by Ackermann. 

11-2 Heterogeneous Case 

Here also the problems of laminar and of turbulent 

mixing are  generally considered separately. The i n i t i a l  

velocity prof i les  a re  again assumed t o  be as shown in 

Figure 11-1.1. However, now the slower moving stream i s  

assumed t o  have a higher density than the f a s t e r  moving 

stream. The buoyancy forces due t o  the density vsr ia t ion  

are usually neglected. 

The laminar mixing problem has been considered by Pa i ,  

Ke~legan,~~, I;ock4’ and Potter.50 P a i  considered the flow 

t o  be compressible. 

the continuity equation. Then, using the distance along 

the j e t  axis  and the stream function as independent variables, 

he reduced the diffusion equation and the equation of motion 

t o  the form of the generalized heat conduction equation. 

These equations were then solved simultaneously by step- 

He used a stream function t o  integrate  

wise numerical procedure. 

The analyses of Keulegan, b c k  and Pot te r  a re  a11 

f o r  the case i n  which the two streams a re  immiscible, i . e . ,  

16 



. 
* 

there i s  no molecular diffusion. 

velocity p ro f i l e  such as tha t  shown i n  Figure II-'1.1 

with 

Keulegan considered a 

uz = 0 

The v iscos i t ies  and densi t ies  of  the two streams were 

assumed t o  be not the same. By writing the continuity 

equation and the equation of motion f o r  each f l u i d  and 

solving them simultaneously, he determined the velocity 

d is t r ibu t ion  i n  the laminar boundary layers a t  the in t e r -  

face, the t h i c h e s s  of the layers and the s t r e s s  a t  the 

interface.  

j 

Lock4' independently considered the same problem. He 

showed tha t  the solutions depend only on the r a t i o  

u2/u1 

of the ve loc i t ies  of the two streams and the product 

where 

His results are  i n  general agreement with those of 

Keulegan. 43 

Potter45 extended Keulegan' s analysis t o  the  case 

where both f l u i d s  a re  moving. 

The turbulent mixing problem has been investigated 

by S ~ a b l e w s k i ~ ' ~ ~ ~ ~  and by Pai." 

of a r t i c l e s  considered the mixing o f  p a r a l l e l  streams of 

d i f f e ren t  temperatures, 

Szablewski i n  a se r ies  

T h i s  problem i s  obviously closely 



related to the one in which the two streams are of 

different chemical composition. 

the two streams have nearly the same velocity but widely 

differing temperatures was first considered. 

assumption results in a simplification of the differential 

equations. 

given for various temperature ratios. 

The special case in which 

T h i s  

Velocity and temperature distributions were 

The problem of the turbulent mixing of parallel 

streams with unrestricted differences in velocity and 

density was considered by Szablewskis in a later paper. 

In this case the Troblem was simplified by linearizing the 

equation of motion. 

hypothesis was used and the ratio of eddy viscosity to 

eddy conductivity was assumed to be 1/2, i.e. , a turbulent 
Prandtl number of 1/2. Velocity and temperature distri- 

butions were again given for various temperature ratios. 

His analysis showed that as the density differences between 

the two streams is increased, the mixing region becomes 

displaced in the direction of the less dense stream. 

Prandtl's exchange coefficient 

Paill considered the two dimensional incompressible 

j e t  mixing of two different gases. 

continuity, motion and diffusion he obtained the following 

generalization of equation 

f o r  the homogeneous case: 

From the equations of 

11-2.. 16 given by Goertler* 

18 
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I n  t h i s  equation, F has the same meaning as t h a t  given by 

Goertler. A' i s  given by 

where 

P I -  P* u1 -up 

P l  -I- P* +p 
r= -  and = 

Obviously, if p1 = p2 then A' = 0 and the equation reduces 

t o  Goertler 's  equation for  the homogeneous case. 

equation was apparently f i r s t  derived by HU6'for the case 

of turbulent mixing of immiscible f lu ids .  Pai considered 

the case i n  which the density difference i s  much less than 

the velocity difference, i . e .  

T h i s  

He concluded tha t  the f i r s t  order e f f ec t  of  density 

differences of the two gases on the velocity d is t r ibu t ion  

i s  s m a l l .  



111. ANAIXCICAL DI;J?IEIX)PMEXT 

So-called "similar" solutions a re  desirable 

f o r  several  reasons. F i r s t  of a l l ,  they allow a 

partial d i f f e r e n t i a l  equation t o  be reduced by 

combination of variables t o  an ordinary d i f f e r e n t i a l  

equation. 

the case i n  which a s e t  of p a r t i a l  d i f f e r e n t i a l  

equations may be reduced t o  one o r  more ordinary 

d i f f e r e n t i a l  equations. Another desirable feature  

of similar solutions i s  tha t  by t h e i r  very nature 

they afford a s t ra ight  forward and simple method of 

c o r r e l a t h g  experimental data. Finally,  i f  a 

similar solution can be obtained, then by properly 

defining a reference length, the independent 

vari-able from the similar solution becomes the 

independent variable i n  the Orr-Sommerfield equation 

of hydrodynamic s t a b i l i t y .  

This fac tor  i s  especially important i n  

20 



111-1 Homogeneous Laminar Mixing 

Only the case of isothermal, incompressible mixing 

w i l l  be discussed here. For t h i s  case, as given by 

Schlichting," the equation of continuity may be writ ten 

The Navier-Stokes equations are given by 

111-1.1 

x-direction p [  + u z  + V a l  = - as1 ax + p(ax2 a2u + &LA) a t  ax ay a p  

I 

111-1.2 

With the usual  boundary layer assumptions tha t  

111.- 1.3 

the Navier-Stokes equations and the  continuity equation may 

be reduced t o  "Prandtl '  s boundary layer .equations" 

h u + i z = o  
ax ay 

I11 -1.4 

A s s u m i n g  steady s t a t e  flow and neglecting the variation 

of pressure i n  the flow direction, which i s  very s m a l l  i n  

the case of  f r ee  je t  mixing, these equations may be fur ther  

reduced t o  give 

z + z = o  
ax ay 

111- 1.5 

21 



The boundary conditions are  

u(x,-m) = U2 111-1.6 

It can be shown that the application of von K a r m a ' s  

th i rd  necessary boundary condition does riot a f f ec t  the 

s imilar i ty  solution obtained from equations 

boundary conditions 111-1.6 

I11 .-lo 5 with 

The equation of continuity may be integrated by intro-  

ducing a stream function $ such that 

I 

Equations 111 -1.5 may then be reduced t o  

111-1-7 

IIL- 1.8 

with the boundary conditions 

To determine i f  a similar 

U 111- 1.9 
2 

solution of equation 111 -1.8 

with boilndary conditions 111-1.9 i s  possible, an af f ine  

transformation i s  applied. A new s e t  of var iables  $ I J  x' 
and y '  are defined by the following r e l a t ions  

9' = a,$' 

x = rx' 
y = sy' 111.- 1. io 

22 



I f  these relationships a re  substituted in to  equation 

111-1.8, 

the same form as the previous equation, then the following 

re la t ion  must be t rue  

and it i s  required tha t  the  new equation be of 

r/sa = 1 I11 -1.11 

Substi tuting equations 111-1.10 in to  the boundary 

conditions given by equations I11 -lo= gives 

III.-l. I2 

If these boundary conditions are t o  be invariant under 

the a f f ine  transformation, then 

a/s = 1 I11 -10 13 

Combining equations 111-1.13 and 111-1.11 gives 

r/sa = r/s2 = 1 111 -1.14 

o r  

o r  

Jr / s  = 1 111 .-i.15 

Combining equations 111-1.15 and 111-1.10 

s = y/y' = 0 = Jx/Jx' I I I . - l o  16 

Y/JX = y'/Jx' 111-1.17 

Thus, the quantity y/Jx i s  inva r i an t  under the a f f ine  

transformation and a new independent variable may be 

23 



defined as 

q = CY/JX III.-l. 18 

This may be put in to  dimensionless form by defining the 

constant C by 

c = mv 111-1.19 

where U i s  a reference velocity and v i s  the kinematic 

viscosity i n  equation 111-1.8. A new dimensionless 

independent variable i s  then given by 

77 = Ym=- 111-1.20 

Combining equations 111-1.13, JII-Ll5,  and 

111- 1.10 

a = ~ / + l  = JP = J X / J X '  111-1021 

o r  

111- 1.22 

Thus, the quantity #/fl i s  a l s o  invariant under the 

affine transformation and a new dimensionless dependent 

variable may be defined by 

f(q) = $/JE 111-1.23 

Using equations 111-1.23 and 111-1.20, equation 

111-1,8 may be transformed from a p a r t i a l  d i f f e r e n t i a l  

equation with dependent variable 9 and independent var iables  

x and  y in to  an ordinary d i f f e r e n t i a l  equation with 

dependent variable f and independent variable 77. 

the indicated algebraic manipulations, equation 

Perfornd-ng 

111-la 8 
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becomes 
f " '  + 1/2 f f "  = 0 111-1024 

The boundary conditions obtained from equation 111-1.12 

are 
u1 
U f q m )  = - 

f'(4) = L k  U 111-~25 

Equation 111-1024 with boundary conditions 111-1.25 

i s  the same as equation I1 -L23 with boundary conditions 

11-1.24. Various solutions of t h i s  equation a re  discussed 

i n  Section I1 .-1. The solution method of Lessen4 w i l l  be 

described in  greater  d e t a i l  here, since the method i s  

generally applicable and w i l l  be used in connection with 

the heterogeneous' problem,, 

t o  as "analytic continuation" 

The method i s  sometimes referred 

Equation 111-1.24 may be written 

111.- 1.24 11  1 f = - l/2 f f "  

This expression may then be eas i ly  different ia ted t o  obtain 

expressions f o r  the fourth, f i f t h ,  and higher derivatives. 

Expanding the function f i n  a Taylor s e r i e s  gives 

f(eW) = f ( 7 )  + f ' ( q ) w  + f"(r7)$/2 + f"' (q)w3/6 + 
+ fIV(q)w4/24 + fv(  7)w5/120 + . 111-10 26 

Similar expressions may be written t o  represent the 

f irst  derivative f r  and the second derivative f " ,  Now, 

if f,  f and f "  a re  known fo r  some large negative value 

of the  independent variable 77, then f'", fLV, fv etc .  may 

be calculated f o r  t ha t  value of from equation 111-1.24 

25 



, 

and the expressions obtained by different ia t ing equation 

111-1.24. Equation 111-1.26 and similar expressions 

and f "  for  f I and f" may then be used t o  calculate f ,  f 

a t  v -t- w. By repeating this procedure, equation III .-1.24 

may be integrated over the en t i r e  i n t e rva l  of 7. 

To obtain the values of f ,  f 1  and f "  for large negative 

111-1.24 i s  obtained 77, an asymptotic solution of equation 

which i s  va l id  for large negative values of v. 
i n  which the asymptotic solution i s  obtained depends upon 

whether u2 = 0, i .e. ,  a half'-jet; o r  both streams are  i n  

mot ion 

The mmer 

If u2 = 0, then from the second of equation III.-l.25, 

the following i s  t rue  

111 -1.27 

Substituting the last of these re la t ions  in to  equation 

111-1.24, it can be e a s i l y  shown t h a t  

f l ( v )  + kl  el 1 s q ,  7 7 3 - 0 3  111 - 1.28 

This i s  then the desired form of an asymptotic expression 

for f 1  good f o r  large negative values of 7). 

expressions f o r  f and f "  may a l so  be obtained. However, 

before these expressions may be used, the values of the 

constants kl  and S must be determined, Lessen used the 

From this, 

following technique : 

26 



He f i r s t  defined a new dependent variable q and a new 

independent variable x by the f o 1lowin.g re la t ions  

1 q(x)  = 3 f ( ? +  

x = sq 111-1.29 

Equation I11 -1.24 i s  transformed t o  

111-1030 q"', f 2 1 qq" = 0 

If u1 i s  used as the reference velocity U, then the boundary 

conditions from equations III.-l.25 become 

f ' (m)  = 1 

f ' ( - m )  = 0 I11 -1.31 

The relationships expressed by equations 111- 1.27 become 

Differentiating the f i r s t  of equatiomII1-L29. 

or 

Subst i tut ing the f i rs t  of equatiomII1-1.31. 

s =  1 / j m  III.-l. 34 
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From equation 111-1.28, it follows t ha t  fo r  large 

negative values of x, q may be represented by 

q(x) = Bo + Bl e + ex + B3 e 3/2r + 0 . 0  

I11 -10 35 

Substituting t h i s  re la t ionship in to  equation 

equating coeff ic ients  of e % , n = 1, 2, 3 and recal l ing 

that q (-a) = -1; it can be eas i ly  shown t h a t  

111-1.30, 

111 -io 36 

Equation 111-1.35 may be d i f fe ren t ia ted  t o  obtain 

expressions f o r  q r  and q". 

U s i n g  these expressions t o  represent q, q '  and q" for 

some large negative value of x, equation III-1,30 may be 

integrated by the method of  analyt ic  continuation. 

the integrat ion has been car r ied  t o  large posi t ive values 

of x, S may be determined from equation 

Once 

111-10340 

The solution t o  equation 111-1.24 is then obtained 

by transforming back using the  f irst  of equations 

Finally, the asymptotic form of f ( q ) ,  good for large 

negative values of qJ i s  

111-1.29. 

f(q) = To + Tle 1/2Sa + TeeSV f T3e  3/*% f 0 0 0  

111- lo 37 

where 
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To = -S 

TI = S 

T2 = -S/4 

TEI = 53/72 I11 -1.38 

If u2 # 0, L e n  the method just  described i s  not 

applicable since f ( 7 )  becomes in f in i t e  for large negative 

values of q o  In this case, the transformation 

i s  used. Equation IiI-1024 becomes 

wf" w l  - w"2 f ~ 1 ww'2 = 0 

with boundary conditions 

w ( w )  = X L  U 
22 
U w ( - m )  = 

111.- 1.40 

111.- 1.4 1 

if UI i s  again used as the reference velocity U, then for 

large negative values of 7 

w(q) 3 UJUL = (51 I11 -1.42 

Equation 111-1.40 Secomes 

w"'w' - W1l2 f 3 U&W r 2  = 0, 7 3 -m 111-1043 

It can be shown tha t  a solution of  thLs equation i s  given 

111-1.44 



For large negative values of q, w, w f  and w" may then be 

represented by 

where 
77 x = JOl 

111-lo 46 

111-1047 

111-1.48 

Using these expressions, the method of analyt ic  continuation 

may be applied t o  equation 111-1.40. However, i n  t h i s  

case the solution becomes t r i a l  and e r ro r  because the 

constant CX can not be eas i ly  evaluated. Thus, C1 i s  

assumed and equation 

posit ive values of 77. 

one for which 

111-1.40 i s  integrated t o  large 

The correct  value of CX, i s  t h a t  

The second boundary eondition i s  satisfied by the asymptotic 

expression for w, i o e . ,  equation 111-1.44. Both o f  these 

cases were discussed by Iessen. However, he obtained a 

solution for the case i n  which u2 = 0 only. 

III.-2 Hon?o&~~eous Turbulent Mixing 

Following the s teps  outlined in  section 111 -1, the 

Navier-Stokes equations and the equation of continuity are 



reduced t o  

111.- 10 5 

The following development para l le l s  t ha t  given by 

Schlichting. 

mathematically by separating it into a mean motion and a 

fluctuating or eddy motion. Thus, the instantaneous 

velocity components u and v i n  the x and y direct ion 

respectively are wri t ten 

Turbulent flow i s  usually described 

u = ; ; : + u '  

V = V + V '  111-2 0 1 
- 

where and are  the time-average velocity components and 

u t  and V I  are the f luctuat ing components. Introducing equa- 

t ions  111-2,1 in to  equations 1114.5 and time averaging 

I11 -2.2 

With the  a i d  of the second of equations 

be wri t ten as 

111-2.2, this may 

111 -2.3 
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Neglecting the term containing the molecular viscosi ty  t h i s  

becomes 

where 

and 

These quant i t ies  are "apparent" s t resses  due t o  turbulent 

flow o r  Reynolds s t resses .  

usually neglected i n  accordance with the boundary layer 

assumptions, The equations t o  be solved are  then 

The term containing ox i s  

111.-2 0 5 

Integrating the continuity equation using a stream function 

and subst i tut ing equations 11-1.14 and II-Ll5, 

Goertler' reduced these equations t o  

Applying an a f f ine  transformation it can be shown tha t  y/x 

and $/x are invariant under the  transformationo 

Convenient t o  define a new dimensionless j-ndependent variable 

It i s  thus 

5 by 



111-2 0 7 5 = u x  Y 

0 = $ ( X r C X )  -1/2 

where 

and 
u1 -up 
u1 +UP 

A =  

A new dimensionless dependent variable F ( 5 )  i s  defined by 

Using equations 111-2.8 and I11 -2.7, equation I11 -2.6 

may be transformed t o  

The boundary conditions are  

111.-2 0 10 

In  th i s  case the reference velocityU i s  given by 

u = + ( U l  + u2) 

It w i l l  be recal led from section 11-1 that E n  pointed 

out that equation 111-2.9 with boundary conditions 111-2.10 

may be converted t o  equation 

la t ion s 

111-1.24 by use of the re- 

f'(q) = u 1 + 

7 7 =  2&5 I1 -1- 25 
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The important re la t ionship between the solution of the 

homogeneous turbulent mixing problem by the method of 

Goertler and the solution of the homogeneous laminar mixing 

problem i s  thus re-emphasized here. 

III-.3 Heterogeneous Laminar Mixing 

This problem may a l s o  be d i r ec t ly  associated with a 

hydrodynamic s t a b i l i t y  analysis of the mixing region flow. 

However, a t  the present time no similar solution fo r  the 

velocity and density prof i les  i n  the mixing region has been 

obtained without cer ta in  simplifying assumptions (see 

section 11 - 2 ) .  

The equation of continuity f o r  this case must be 

written as 

because 

due t o  molecular diffusion. 

density prof i les  i n  the mixing region, equation 

must be solved simultaneously with the species diffusion 

equation and the equations of motion. 

formation t o  these equations w a s  not found. Therefore, a 

different approach was necessary t o  obtain a sirni-lar so1ut:Lon. 

The equat5.on of contjnuity may be wri t ten i n  terms of 

To obtatn the velocity, and 

111-3.1 

A n  a f f ine  t rans-  

the m o l a r  density C and the molar average ve loc i t ies  

34 



= o  * 3b 4(CU*) + a(cv*) u and v as ax 3Y 

Rewriting, t h i s  equation becomes 

111-3.2 

111-3.2 

If i t  i s  assumed tha t  the pressure and temperature of the 

system remain constant, then the molar density C i s  a l so  a 

constant and the last two terns  i n  equation 

vanish. 

average veloci t ies  i s  then given by 

111-3.2 

The equation of continuity in terms of molar 

I 
I11 -3 3 

Next, the diffusion equation must be writ ten i n  terms 

of u*, v* and p. 

may be wr i t ten  

The equation o f  continuity of  coxponent. A 

111 --3.4 

where NA i s  t h e  molar f lux  of component A. 

The moles concentration of component A CA, the mole 

f rac t ion  of component !XA and the velocity components o f  

species  i ui and vi a re  re la ted  by 

111-3.5 

111-3.6 

where B i s  the molecular diffusivi ty .  
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NAx + Nm = C A A  u 

NAY + NBY = CAVA + CBVB III--3*7 I 

+ CBuB 

Combining equations 111-3.3 through I11 -3.7 and neglect- 

ing  diffusion i n  the direct ion of 

continuity of component A becomes 

acA a2cA 
ay - ‘5 + P - -  u* - acA 

ax 

bulk flow, the equation of 

111.-3 8 

The relationship between CA and p must now be established. 
I Defining the mass concentration of components A and B by 

PA and pB respectively, the t o t a l  density p i s  given by 

o r  

where MA and MB are  the molecular weights of components A 

and B. Since CA + CB = C and C i s  a constant, 

I_- acB _ -  - acA 
axi axi 

Combining equations 111-3.11 and I11 -3 10 

111-3.11 

Equations 111-3. I 2  may now be subst i tuted in to  equation 

1.11-3.8 t o  give the desired form of the diffusion equation. 
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Before the momentum equation cam be writ ten i n  terms 

of E*, v* and p ,  the relationship between the mass average 

velocity v and the molar average velocity v must be 

established. 

* 

The mass average velocity v i s  by def ini t ion given by 
n 

where wA and wB are  the weight fractions of A and B re- 

spectively. 

v i  may be writ ten 

Since wA + wB = 1, the difference between v and 

r 
v - v * = w v  A A + WBVB - (wA+wB) v4 I11 -3.15 

or 

v - V* = wA(vA-vI) + w ( V  v*) 111-3.15 

The molar flux Ji 

B B- 
* 

r e l a t ive  t o  the molar avera.ge 

veloci ty  v* i s  given by 

* aci 
1 1  ay Ji = C . ( V . - v " )  = -8 - 111-3.16 

Using t h i s  re la t ionship t o  subst i tute  f o r  vA-v* and 

v ~ - v *  i n  equation 111-3.15, the difference between v 

and v* becomes 

o r  
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Finally, subst i tut ing from the second of equations 111-3.12 

Simi. lar ly, 

I11 -3 19 

The x-component of the momentum equations may be 

written 

111.-3.2 1 

Here the usual boundary layer assumptions have been made and 

the pressure drop i n  the flow d i rec t ion  has been neglected. 

The body force term i n  the y-component of the momentum 

equations has been neglected thus eli-minating that  equation 

on the basis of the boundary layer assumptions. 

body force term was included i n  the analysis, a similar 

solution could not be found. 

When the 

Equati-on 111-3.21 i s  wri t ten i n  terms of mass aver- 

age veloci t ies .  

and v and v* w i l l  now be used t o  rewrite t h i s  equation i n  

terms of molar average ve loc i t ies .  

The derived relat ionships  between u and u* 

Rewriting equation 

111-3 20 
4 u - u* = - - 
P 

However, << * 
ax ay 

w i t h  the boundary 

d.42 
ax 111-3 20 

and therefore u z  u*. 

layer assumptions, it w i l l .  be assumed 

Thus i n  accordance 

that  



u = u* I11 -3 22 

Substi tuting equations 111-3.22 and 111-3.19 in to  equa- 

t i on  IIi-3.21 and simplifying by use of equation ILI-3,3 

111-3 24 

where 

and Sc i s  the Schmidt number defined by 

sc = v/A 111-3 26 

A t  t h i s  point it i s  convenient t o  divide the fur ther  

discussion in to  two cases. The f i r s t  case considered w i l l  

be for a Schmidt number of uni ty  and the second case w i l l  

be f o r  an arb i t ra ry  Schmidt number. 

'I 
Case 1 Sc = 1 

If the  Schmidt number i s  u n i t y  then equation 111-3.24 

xay be wri t ten as 

I11 --3 27 

The equations which are t o  be solved s imltaneously t o  

obtain the  velocity and density prof i les  i n  the mixing 

region a re  
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. w + a v " = ,  
ax ay III.-3 3 

The boundary conditions a re  

U(X, m )  = UI, 

U(X, -m)  = Q 

P b ,  4 = P l  

p(x, -4 = P2 

111-3 0 13 

111-3027 

111-3 28 

After once again integrat ing the continuity equation 

using a stream function, the search f o r  a similar solution 

i s  carr ied out by applying an a f f ine  transformation t o  the 

remaining equations m d  the boundary conditions 

The quant i t ies  y/JX and Q/G are  found t o  be invariant 

under the transformation. Thus new independent and 

depend-ent variables may be defined exactly the same as 

f o r  the homogeneous laminar case described i n  section 111-1 

111-3.28. 

111-1.20 

111-1.23 

It i s  a l s o  found tha t  

P = d o )  111-3 29 
Using these three relat ionships  equation 111- 3 -  27, rewrit ten 

in terms of the stream function Q, may be transformed t o  
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/i 
Equation XII-3.13, rewritten i n  terms of  the stream 

function #, transforms t o  

- -  f -p"  
2 - P I  

Combining equations IIL-3 31 and I11 -3.30 

Integrating, 

In p'  = I n [ p f ' ]  + I n A  

Simplifying, 

Integrating again, 

In p = - . I n [ l - A f ' l  + In B 

Simplifying, 

B 
P = 1 r  

'I 

111-3 0 31 

111 -3.33 

I11 -3.34 

111.-3 0 35 

111-3.36 

Different ia t ing t h i s  re la t ionship t o  f ind p f  and p" and 

subst i tut ing these relationships into equation 

gives 

111-3.31 

f"' r, 1 f f "  = -2Af 'I2 

2 1-Af ' I11 -3.37 

The boundary conditions f o r  equations 

3.36 are from equations 111-3.28 

111.-3.37 and III- 
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In this case the reference velocity U i s  again taken as 

u19 Substi tuting these r e l a t imsh ips  in to  equation III- 

3.36, gives two equations in the tvo unbowns A and B. 

Solving these equations gives 

I-r), B = p i  [ 
r +  x IIL-3 39 

where 

Pl -P? 

P1+-P2 
r =  

Thus, i f  the two streams have the same density, then 

and A a re  equal t o  zero and equation 

t o  the homogeneous equation 

III.-3.37 reduces 

I11 -1.24. 

It i s  proposed t o  solve equation 

method of analyt tc  continuation. Equation 

rewritten in the form 

I11 -3.37 using the 

III.-3.37 may be 

I11 -3.40 

. T k i . s  equatton may then be di-fferent ia ted t o  obtaj-n 
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expressions for the fourth, f i f t h ,  and higher derivatives. 

Asymptotic expressions for f ,  f f ,  and f "  valid for 

large negative values of  q must once again be obtained i n  

order t o  start the numerical integration. Here, j u s t  as in 

the case of homogeneous laminar -hixing, the manner in which 

these asymptotic expressions a re  obtained depends upon 

whether u2 = 0 o r  u2 f 0 . 
If u2 = 0, then once again from the boundary condi- 

t ions  111 -3.38 

Then for large negative values of q, equation 

be w r i t  ten 

But f" -, 0 fo r  q 3 -03, therefore 

I19 -3 41 

111-3.37 may 

To determine the constants kl and S, the same technique 

as t h a t  employed by Lessen4 i n  the homogeneous case w i l l  be 

used. The new dependent and independent variables are  

q ( x )  = + f ( q )  111 - 1 29 

7 111 - 1,251 x = s  

Equation 111-3.37 becomes 

I11 -3 44 
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where 

Q = 1/S2 

It i s  again assumed tha t  q may be represented by 

Substituting t h i s  re la t ionship i n t o  equation 111-3.44, 
n 

equating coeff ic ients  of e 2 , n = 1, 2, 3 and recal l ing 

that q (-a) = -1, it can be shown t h a t  

-X 

Bo = -1 

Bi = 1 

= - ( A  + Q)/4Q 

& = ( 6A2 + 13W + 5Q2 )/72Q2 

111 -3  46 

Since A = o i f  the densi t ies  of the two streams a re  the 

same, these relationships reduce t o  equations 111-1.36 

for the homogeneous case. 

Equation 111-3.45 may be d i f fe ren t ia ted  t o  obtain 

expressions fo r  ql and q" f o r  some large negative value of 

x. Equation 111 -3.44 may then be integrated by analyt ic  

continuation. However, i n  this case the value of the 

constant S may not be obtained d i r ec t ly  since the quantity 

Q = 1/S2 appears i n  the asymptotic expressions for q, q '  

and q". Therefore, it i s  necessary i n  this case t o  assume 

a value f o r  S and then carry out the integrat ion t o  large 

posit ive values of x. 

equati-on III.-l.34. This procedure i s  repeated un t i l  the  

S may then be calculated from 
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assumed value of S agrees with that  calculated from equation 

111-1.340 

In  this case the asymptotic f o r m  of f ( q )  for large 

negative values of 77 i s  given by 

111-3.47 

where 

To = -S 

TI = S 

T2 = &S 

T3 = B3S I11 -3.48 

If  Q f 0 ,  then the transform-ation f ( q )  = [w( q)dq 

i s  again used. Equation 111-3.37 becomes 

I n  the l imi t  f o r  large negative values of q, the terms on 

the r igh t  hand side of  th is  equation vanish  and thus t o  a 

first order of approximation the asymptotic solution of 

equation 111-3.49 i s  given by equation 111-1.44, i. e., 

111-1.44 

FOP large negative values of  q, w, w ' ,  and w" may represented 

5y equations 111-1.45, 111-1.46 and I11-1.470 The 

solut ion i s  again by t r i a l  and error t o  determine that 

Value of  C 1  f o r  which the boundary condition a t  i n f i n i t y  i s  

satisfied, i. e., 

f '  ( m )  = w ( m )  = 1 
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If - r = A, then from the f i r s t  of equations 111-3.39, 

the constant A becomes in f in i t e .  I n  th i s  case equations 

I11 -3.37 and 111-3.49 may be rewritten as 

and 

From the def ini t ions of X and r, it follows tha t  i f  -r = A, 

then 

PIUl = p2u2 

i .e. ,  the momentum of the two streams i s  the same. 

Case 2 Arbitrary Schmidt Number* 

The equations t o  be solved simultaneously in this case 

are 

111 .-3 3 

I11 -3.13 

I11 -3.27 

The boundary conditions are the same as f o r  Case 1. Once 

again a stream function i s  used t o  in tegra te  the equation 

of continuity. The application of  an a f f ine  transformation 

* The author i s  indebted t o  ppofessop L. N. Tao fop  pointing 
Out the exact d i f f e r e n t i a l  form used i n  t h i s  case. 
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then r e su l t s  i n  the def ini t ion of the same new independent 

and dependent values as i n  Case 1. Thus, using equations 

111-1.20, 111-1.23 and 111-3.29 equation 1 1 3 . 1 3 ,  

rewritten i n  terms of the stream function $, transforms t o  

f p "  111-3.52 
-2It = P'  

Equation 111-3.24, when rewritten i n  terms o f  the stream 

function $, transforms t o  

111-30 53 f - 5 [pf" + f ' p ]  = ( p f " ) '  + K (f'p')' 

Equations 111-3.51 and 111-3.50 may be combined to 

give 

p 'pf" '  + f "  [ ( l + K )  - Kpp"] = 0 111-3.54 

or 

Integrating 

o r  

1+K = 
P 

Taking the K t h  root of both sides 

111-3 55 

111-30 56 

111-3 57 

ii 1/K 
*K = 'sf 
P 

111-3 58 
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or 

Equation 111-3.52 may be rewritten as 

P" 

P P '  

t 
f"' f- f "  [ ( l + K )  !!- - K -1 = 0 

Mult iplying equation 111-3.58 by plJK gives 

P '  1 / K  - = c3 (p f " )  
P 

111-3.59 

111-3.60 

111-3.61 

111-3 62 

Substituting f o r  p t / p  and ,Q"/~' according to 

equations 111-3.62 and 112-3.52, equation 111-3 61 

becomes 

f"' -I- f " [ ( l + K ) C , (  [ifr1) -K ( -  & ) I  = 0 111-3 63 

or 
K + 1  f"" + $ f f "  = - (1+K)  Csp 1/K 111-3 0 64 

1/K Substituting f o r  p from equation 111-3.60 this becomes 
1/K -1 - K + 1  1 f"' + 5 f f "  = l+K C3[C4+C3 J ' (f")  dq] f "  K K 

111-3.65 

o r  
1/K -1 1+sc 

f" '  + 3 f f "  = (1+Sc)[C5 + J ' ( f " )  d ~ ]  2" 

1113.66 

where 

c5 = c4/c3 
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The boundary conditions a re  

p ( m )  = P1 

p(--m> = p2 111 -3.67 

Applying these boundary conditions t o  equation 111- 

3.60, 

These equations may be solved simultaneously t o  give 

-sc 

and 
-sc -sc 

--m 

Thus, 

I11 -3.69 

111- 3 70 

The equation t o  be solved t o  obta in  the velocity dis t r ibut ion 

i s  
7 s c  -1 1+sc 

f" '  + $ ff" = (1 + Sc)[Cs + J' (f") d ~ ]  f" 

111 -3.72 
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Wen s o l v b g  t h i s  equation by the method of analyt ic  

continuation, the cases of u2 = o and u2 f o must once 

again be different ia ted.  

w i l l  be considered here. U s i n g  the transformation 

Only the case fo r  which u2 f o 

-co 

2 s c + 1  
11 f s c )  w '  I11 -3 0 73 

Here again, i n  the l imi t  for  large negative values of 77, 

the terms on the r igh t  hand side of t h i s  equation vanish. 

Thus, the asymptotic forms f o r  w, w 1  and w" are  again given 

by equations 111-1.45, 111-1.46 and 111 -1.47. How- 

ever, these asymptotic forms contain the unknown constant C1. 

Thus, the solution i s  again by t r i a l  and error .  However, 

i n  t h i s  case an addi t ional  complicating f ac to r  i s  present 

The constant C 5  contains a n  i n t e g r a l  from minus i n f i n i t y  

t o  plus in f in i tyo  

u n t i l  equation 

posit ive values of 77. 

C5 and CL had t o  be assumed. Equation 

be integrated t o  large pos i t ive  values of 7. 

values of C 5  and CI are  those f o r  which the boundary 

condition a t  i n f i n i t y  i s  s a t i s f i e d  and the value of C 5  cal-  

culated from equatrion 

The author was unable t o  evaluate C 5  

111-3.71 had been integrated t o  large 

T h i s  means t h a t  both the constants 

111-3.73 may then 

The correct  

I I I -3061  agrees with the assumed 



value. 

determined and equation 

follows from equation 

t r ibu t ion  i s  given by 

Once the proper values of  C 5  and C 1  have been 

I11 -3.73 has been integrated, it 

111-3.60 that the density dis- 

111' -3.74 
-02 

The terms on the r igh t  hand side o f  equation 

contain the f ac to r  

III.-3.73 

s" ( w ' )  sc drl 
-02 

The asymptotic 

be obtained by 

and performing 

value of th i s  term f o r  large negative q may 

subst i tut ing f o r  w' from equation I11 .-lo 46 

the indicated integrat ion t o  obtain a 

complmentary e r ror  function. 

term i s  then carr ied out s tep by step along with the 

integrat ion of equation 111-3.73. 

The integrat ion of this 

111-4 Heterogeneous Turbulent Mixing 

If molecular diffusion i s  neglected, then u s u* and 

v 2 v*. Thus, neglecting molecular diffusion and the 

effect of molecular viscosity, i t  follows from equations 

III.-3.3, 111-3.13 and 111-3.23 that the equations 

of continuity, diffusion and momentum may be writ ten as 

111-4.1 

111-4 2 
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* 

The addi t ional  assumptions associated with these equa- 

t ions are outlined i n  section 111-3. The velocity 

components and the density a re  assumed t o  be composed of 

an average plus a fluctuating component. Thus, 

Introducing these equations in to  equation 

time averaging, the continuity equation becomes 

111-4.1 and 

Similarly, the dif  fusLon equation, with the boundary layer 

as sump t ion s , be c- ome s 
( t )  

i i J - Q + Y  & = %  111-4.6 
- 

ay ay ax 

( t )  i s  the turbulent mass f lux  i n  the y-direction where J 

defined by 
7 

And the momentum equation, w 

assumptions, be come s 

111-4 a 7 

t h  the boundary layer 

IIL-4 8 

Substituting equations 

stressr and assuming t h a t  

11-1.14 f o r  the turbulent shearir.4 

XY 
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. 
., 

where i s  the eddy diffusivity,  equation III.-4.6 

becomes 

111-4.10 

and equation 111-4.8 becomes 

o r  

where 
K '  = 1/SS ( t )  I11 -4 13 

and SC(~) i s  the turbulent SchtnLdt number defined by 

sc (t) = E/, ( t>  1 1 1 4 . 1 4  

Thus, the equations t o  be solved simultaneously a re  

I11 -4.5 

111.-4 15 

111.-4 12 
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c 

The eddy viscosity c w i l l  be assumed t o  be represented by 

Prandtl 's  exchange coeff ic ient  hypothesis, i . e . ,  

11- 1.15 

w i t h  b = c x ., Once again the cases of a Schmidt number 

of unity and an a rb i t r a ry  Schmidt number mst be differen- 

t ia ted.  

Case 1 Sc = 1 

Integrating the continuity equation using a stream 

function and applying an a f f ine  transformation, it can again 

be shown tha t  y/X and @/x are  invariant under the trans- 

formation. Thus, a new independent variable i s  

5 = 0 ,  Y 111-2 0 7 

where 

and a new dependent variable i s  

where 

u = $(ul + u2) 

Also, 

P = P ( 0  

III -2 8 

11x4 16 

In terms of these new variables, equation 111-4.15 

becomes 

-20F = p" , I11 -4 17 
P 



and equation 111-4.12 becomes 

-2oF = C P F '  1" 
CpF'I' 

Solving equations 111-4 18 and 

as i n  section 111-3, gives 

The development given i n  this 

111-4.18 

III-4 17 simultaneously, 

111-4 19 

111-4.20 

section i s  similar t o  

t h a t  given by Pai." Equation 111-4.20 was given by Pa i ,  

however, it was apparently f i r s t  derived by HuO6' P a i  s 

development was used as a guide for the laminar s imi la r i ty  

solution developed in section 111-2. 

The boundary conditions are 

From these boundary conditions and equation 

constants A '  and B' are  given by 

I11 -4.2 1 

111-4.19 the 

By using the following relationships 



equations I11 -4.19 and I11 -4.20 with boundary conditions 

111-4.21 may be converted to equations 

111-3.37 with boundary conditions 111-3.38. Thus, here 

11133.36 and 

also a simple relationship exists between the solution of 

the heterogeneous turbulent mixing problem using Prandtl' s 

exchange coefficient hypothesis and the solution of the 

heterogeneous laminar mixing problem, 

Case 2 Arbitrary Schmidt Number 

A similarity analysis of equations I11 -4.5, 111- 

4.15 and I11 -4.12 yields 

F"' + 2oFF" 

111 - 4 2 4  

-m 

111-4.26 

111-4.27 



111-4028 

The boundary conditions are given by equations II1-4,21. 

By using the following relationships 

f'(q) = O F ' ( ( )  
1 + A  

- 2 L 
1 CS' = [ 2  -Sc(t)+l 2 2 111-4.29 

equations 111 -4.24 and III.-4.25 with boundary conditions 

111-4.21may be converted to equations I11 -3.72 and 
I11 -3.74 with boundary conditions 111-3.67. Thus, once 

again a simple relationship exists between the turbulent 

and laminar solutions. 

111- 5 The Indeterminateness of the Third Boundary 
Condition 

In each of the four previous sections of this chapter, 

-the ordinary differential equation from which the velocity 

distribution was to be determined was of the third order, 

However, in each instance only two boundary conditions on 

the velocity were specified. A third applicable boundary 

condition is not readily apparent. 
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Most previous investigators1J6J4 have a r b i t r a r i l y  

specified this t h i r d  condition as  

111 -5.1 U 
u1 

f ' ( 0 )  = u 1  = 2 [lf 3 1  

f o r  the laminar case with U = u1, o r  

F ' ( o )  = + 1  I11 -5 0 2 

f o r  the tuvlbulent mixing case with U = 

Physically, these boundary conditions specify tha t  the 

(ul + u2 ) . 

l i n e  y* = 0 passes through the points where the velocity 

i s  the arithmetic average of the two f r ee  stream veloci t ies .  

This means t ha t  the l i ne  y* = 0 i s  not the x-axis and the 

rectangular coordinate y and y* are  not one and the same, 

In other words, the functions f ( 7 7 )  and F (  5 )  are  wri t ten i n  

terms of the new independent variables 77* and (*, where 

rl* = Y* 6 111 -5 3 

and 

( * = u x  2 2  111.-5 4 

The f i r s t  two boundary conditions remain the same when 

writ ten i n  terms of the new independent variables. 

In the laminar case, the l i n e  y* = 0 i s  a parabola given 

by 

k = k 2  
J x  

where k2 i s  a constant. Since 

reIationsh-ip bcttrecn yx and the rectangular coordinate y i s  

= 0 along th i s  l ine ,  the 

given by 
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Combining equations 111-5.5 and 111-5.3, the re lat ion-  

ship between rj* and 17 i s  given by 

111.-5 0 6 

The constant k2 must be determined experimentally, 

Similarly, i n  the turbulent mixing case, the l i ne  y* = o 

i s  a s t ra ight  Line given by 

y = m  111-5 0 7 

Since y” = o along this line, p+ and y a re  re la ted  by 

p = y - m  111-5.8 

Combining equations 1113.8 and 11~5.4, 

In t h i s  case the constants (5 and m must both be determined 

experimentally. 

In summation, i f  the t h i r d  boundary condition i s  arbi-  

t r a r i l y  specified, as i n  equations 111.-5.1 and 111-5.2, 

then the  laminar solution contains one empirical constant 

t o  be determined experimentally and the turbulent solution 

contains two empirical constants t o  be determined 

experimentally, 

The remaining discussion i n  this section w i l l  be re- 

s t r i c t e d  t o  the laminar case. However, because of the 

relat ionship between the laminar and turbulent solutions, 

the  discussion applies equally as well t o  the turbulent case, 
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An a l te rna te  form of the th i rd  bowdary condition was 

discussed by lessen3 and by Crane. 44 

$, as defined i n  section 

The stream function 

111-1, i s  given by 

The boundary between the f l u i d  of both streams mst be a 

streamline and a l s o  must pass through the point x = 0 ,  

y = 0. From equation 111-1.23, it can then be seen t h a t  

Q = 0 i s  the boundary streamline, 

suggested tha t  the t h i r d  boundary condition be specified as 

Lessen and Crane 

Q(qo) = 0 II1.-5 10 

Combining equations I I L - ~ .  l o  and 111-1.23, the t h i r d  

boundary condition i s  given by 

f ( q 0 )  = 0 111.-5 .11 

If the function f i s  wri t ten i n  terms a new independent 

variable q* = q - qoJ then the t h i r d  boundary condition 

becomes 

f ( 0 )  = 0 111-5-12 

The boundary streamline i s  given by 

To determine the posi t ion of t h i s  streamline i n  the x-y 

plane, the value of  qo must be known. Crane suggested t h a t  

qo be deter&ned experimentally. 

von Kannan5 proposed t h a t  the t h i r d  boundary condition 
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be given by 

ULVL + u2v2 = 0 111-5-14 

where VI and v2 a re  the v-component o f  velocity f o r  

and 7 -t -a respectively. Physically, t h i s  boundary condi- 

t ions  specif ies  t h a t  no external  forces a re  act ing on the 

t o t a l  f l u i d  system perpendicular t o  the main flow, i .e. ,  

uLvl represents the transfer of x-momentum in the y-direction 

f o r  77 + m and u2v2 represents the t ransfer  of x-momentum i n  

the y-direction f o r  q -+ -me 

external  force acting on the t o t a l  f l u i d  system perpendicular 

t o  the main flow, then the sum of  these two terms must be 

zero. 

-t m 

If  there i s  t o  be no net  

Yen43 has shown tinat t h i s  boundary condition may be used 

t o  determine the value of Q., and thus locate the I$ = 0 stream 

l i n e  in the x-y plane, The three boundary conditions a re  

and 

U l V l  + u2v2 = 0 

111-5015 

111-5- 1 4  

I n  addition t o  these conditions, it i s  known tha t  along the 

streamline I$ = 0, r7 = qo or 

f(0) = 0 111-5012 
If q* i s  the independent variable, then from equations 

111-5.15 f o r  q* -+ m 
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.m* 3 0) f ( q * )  q* - ' I  

and for q* 3 --m 

f ( q * )  - q* - 8, q* - -03 
The stream function rc, i s  given by 

Thus, since v= -a$/ax, v i s  given by 

v = + m x  [ - f (q*)  - qf'(q*)] 111-5.19 

It then follows from equations 111 -5.16, 111-5.17 and 

111-5.15 that f o r  q* -+ 

v - 3 m x  [ort:701, q - 03- 
and for q 3 -W 

I11 -5 2 1 

11~5.20  

Finally,  combining equations III.-5.20, III.-5.2l 

and 111-5.15, equation 111.-5.14 becomes 

Instead of equation 111-5.23, Yen obtained the 

condition 



The form of this equation i s  s l igh t ly  d i f fe ren t  because 

Yen applied the boundary conditions 

instead of equations 111-5.15. However, the denominator 

of the term on the right hand s i d e  of  equation 

i s  preceeded by a minus sign, whereas there i s  no minus 

sign i n  equation 111-5.24. 

111-5.23 

Yen obtained equation 111 .-5.24 by considering the 

momentum equilibrium i n  the y-direction f o r  f l u i d  within a 

cont ro l  surface in  the x-y plane. 

t i on  from minus i n f i n i t y  t o  plus inf in i ty ,  Yen wrote one 

of the terms as 

Performing an integra- 

a 

C(l+x) [ottqo(l+X) 3 - ( l - A ) [ B +  ?7$-X)13 77 

q = -0) 

111-5926 

He then s ta ted  that i n  order t o  insure convergence of the 

in tegra l ,  the terms inside the ou te r  brackets i n  equation 

111-5.26 must vanish o r  equation 111-5024 must be 

satisfied. 

Equation 111.-5.26 should have been writ ten as 
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then, i n  order t o  insure convergence of the integral ,  the 

terms inside the-outer  brackets must vanish or 

111-5 0 29 l + x = B +  r),( 1 - x  
- -[a + 7?0(1+x)1 

Thus, Yen's condition as s ta ted  by equation I11 -5.24 

i s  wrong. However, if u2 = 0, i .e.,  = 1, then from e i the r  

equation III.-5.29 o r  equation I11 -5-24, 

Therefore, Yen's condition i s  va l id  f o r  the case o f  = 1. 

Yen concluded from the numerical data of b c k  tha t  f o r  

= 1, the mixing region def lec ts  toward the s ta t ionary 

f l u i d  whereas f o r  

higher velocity stream. 

ted by the error  i n  equation 

= 0.5 the interface def lec ts  toward the 

The second conclusion i s  invalida- 

111-5.24 (see s e c t i o n m -  

1-1) 0 

A complete s e t  of boundary conditions f o r  the homogen- 

eous laminar mixing problem i s  given by equations III.-5.14, 

111-5.15 and 111-5.12. The application of these bound- 

a ry  conditions leads t o  equation 

value of qo may be calculated without experimental data. 

For the case of heterogeneous laminar mixing, equation 111- 

5.14 i s  logical ly  extended t o  

111-5.23 from which the 

The constant 7 i s  then calculated from the relat ionship 
0 
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or 

I11 -5.33 

With these boundary conditions, the laminar mixing 

problem i s  completely determined and the turbulent mixing 

problem contains only the empirical constant Q t o  be 

determined experiment a l ly  
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IV . CAXULATION PROCEDURES 

The solutions of the d i f f e r e n t i a l  equations given i n  

Chapter I11 were obtained basical ly  by the method of 

analytic continuation. 

obtain the f i n a l  solution f o r  each special  case are outlined 

in t h i s  chapter. 

the solutj-ons of the laminar and the turbulent problems 

separately since only the solution of the laminar problem 

w a s  actual ly  calculated, 

problem was obtained by transformation of variables in each 

case. 

The procedures tha t  were used t o  

There is ,  o r  course, no need t o  describe 

The solution fo r  the turbulent 

Most of the calculations were done on the IIT IEN 
7040 computer. 

When integrating an equation by the method of analyt ic  

continuation, it i s  necessary t o  specify the i n i t i a l  value 

of the independent variable and the increment s ize  fo r  the 

numerical integration. 

variable i n  each case was specified as that value fo r  which 

the velocity, as calculated from the asymptotic expression 

f o r  f 1  was ident ica l ly  equal t o  the asymptotic value of the 

velocity i n  the f i r s t  four or f i v e  decimal places out of 

eight. 

The i n i t i a l  value of the independent 

The increment s ize  w z s  halved u n t i l  the  results no 

longer charged. 

Section IV-4 i s  included t o  describe the  method of 

detem6ning the value of the constant from eqe r imen ta l  

data. 



. 

I V - 1  Similarity, Homogeneous Case 

I V - 1 - 1  u = 0 
2 

A schematic diagram of the calculation procedure i s  

shown in  Figure IV-1-1.1. Fi r s t ,  equation 111-1.30 was 

integrated by the method of analytic continuation using 

equation 

negative value of x. Next, the value of S was calculated 

from equation 111-1.34. Equation 111-1.24 was then 

integrated by analytic continuation using equation 

111-1.35 t o  represent the solution for a large 

I-I.-1.37 t o  represent the solution for a large negative 

value of? . 
Equation 111 -5 I2 requires that 

f(q*) = 0, v* = 0 111-5 I2 

The independent variable in the solution obtained as out- 

lined above was designated 6.  
between 

That value of  < f o r  which f ( f i )  = 0 was designated T* = 0 i n  

accordance with equation 

t o  ij plus or minus  a constant. 

To determine the relaticnship 

and Q*, the tabulated values of f ( 6 )  were examined. 

111-5.12 above. Thus, q* i s  equal 

The values of a and fi  were next calculated from 

equations 111-5.16 and 111 -5.17. The value of T o  was 

then calculated from equation 111-5.23. 

Knowing the value of Q,, the v-velocity profiles were 

then calculated from equation 111-5.19 recalling that v* = 

7? - T o .  



Integrate 
equation 
111 -1.30 

Calculate S ' Integrate  

111 -1.34 111 -1.24 
=-. using equation , R- equation 

- 

Fig .Iv - 1- 1.1. Calculation Procedure 
Homogeneous Case, u2 = 0 

'I 
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Calculate 
v - ve l o  c i ty  prof i l e  :I 

us ing  equation 
111 45- 19 

L 

Calculate a, 6 and Determine 
using equations the relationskiF 

=+ I11 -5 16, 111-5 l y  between 
r\ 

and 111-5.23 q and v* 
- 

Transform 
resu l t s  using 

e quat i on s 

11 -1.25 

* Tabulate 
r e su l t s  

r 



IV-1-2 u2 f 0 
A schematic diagram of the calculation procedure i s  shown 

in FigureIV-1-2.1. Equation 111-1.40 was integrated by the 

method of analytic continuation using equations 111-1.45, 

111-1.46 and 111-1.47 t o  represent w, w '  and w" for a 

large negative value of r ] .  Since these equations contain 

the unknown a constant C 1  it was first necessary t o  assume 

the value of C 1  Equation 

a large posi t ive value of r ]  and the boundary condition given 

by equation 111-1.44 was applied. T h i s  process was re-  

peated, assuming new values of C 1  until the boundary 

condition given by equation 111-1.44 was sa t i s f ied .  

111-1.40 was then integrated t o  

Next, the ftmction f was calculated by integrat ing w, 

i.e., f = swdr]. It follows from equation 111-1.25 tha t  

if f = 0, then f" '  a l s o  must be zero. Since w" = f"' , 
the location of the point where f = 0 was fixed a t  tha t  

point where w" = 0. The values of f were then obtained 

for  plus and minus values of r]* by integrat ing forward and 

backward from the point where f (q*) = 0, r]* = 0.  

The values of a and P were then calculated from 

equations 111-5.16 and 111 -5.17 and r ] ,  was calculated 

from equation 111-5.23. Next, the v-velocity p ro f i l e s  

were calculated using equation 111-5.19 and the turbulent 

solut ion was obtained by transformation of  variables using 

equations 11-1.25. The laminar and turbulent solutions 

were then tabulated. 
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Assume u I Apply Integrate  
boundary condition 

given by 
equation 
111-1.40 

equation I I11 -1.49 

C alcu l a t  e 
v-velocity proi b sing equation 

Transform 
r e su l t s  using 

equations 
11 -1.25 

Calculate a, p, 1 
and 77, using 

p a t i o n s  I11 -5.16, 
111 -5.17 

and 111-5.23 

Calculate f 
by integrat ing w 

i.e. f = Jfdt.1 t-i 
L I L I 

Tabulate 

r e s u l t s  

Fig.lV-1-2.1. Calculation Procedure 
Homogeneous Case, u2 f 0 



IV-2 Similarity, Heterogeneous Case 

m-2-1 sc  f 1.0, u2 = 0 

A schematic diagram of the calculation procedure i s  

shown in FigureIV-2-1.1. Equation 111-3.44 was integrated 

by analytic continuation using equation 

present the solution f o r  a large negative value of . 
Since equations III .-3.44 and III.-3.45 contain the un- 

known constant Q = 1/S2, i t  was f i r s t  necessary t o  assume 

a value of this constant. After integrating equation 

111-3.45 to re-  

111-3.44 t o  a large posit ive value of x, the value of S 

was calculated from equztion I11 -1.34. This procedure 

was repeated u n t i l  the assumed and calculated values were 

the same. Equation 111-3.37 was then integrated using 

equation 111-3.47 t o  represent the solution f o r  large 

negative values of  q. The remaining procedure for this 

case pa ra l l e l s  t h a t  described i n  sectionIV-1-1 for the 

homogeneous case. 

IV-2-2 s c  = 1.0, u2 f 0 

A schematic diagram of  the calculation procedure i s  

shown i n  Figure IU2-2.1. Equation I11 -3.43 was integrated 

by ana ly t ic  continuation using equations 111 -1.45, I11 -1.46 
and 

value of q. A s  described i n  section IV-1-2, the constant C 1  

was obtained by t r i a l  and er ror  procedure. 

111-1.47 to represent w, w *  and W" f o r  a large negative 

The function f was then calculated by integrat ing w. 

It follows from equation 111-3.37 t h a t  if f = 0, then 
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Assume 
- E Q = l/S2 

f 
L - t I 

Integrate Calculate S 
equation ~ .us ing  equation 

II1.-3,44 II-I:.-l. 34 

2alculate a, /3 and q0 Determine the 
u s k g  equations relat ionship 
111-5.16, 111-5. be tween 
17, III--5 0 33 $ and q* 

-+ 

v 
1-1 Calculate F l  

Integrate 
equation 

using q u a t  ion equations 
11~5.19  111-1,25 

Fig.IV-2-1.1 Calculation Procedure 
Heterogeneous Case Sc = 1.0, u2 = 0 
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I Integrate I 

i 

Calculste (Y, fi  and 7 
using equations 

0 

I11 -5 16, III.-5 17 
I11 -5.33 

I 

4- 

wuui t ion  given 
by equation 

I11 - 1.49 

Apply boundary 
condition given 
by equation 

I11 - 1.49 

1 
T J I 

C a lcu la  t e 
-ve l o c i  t y prof i le s 

u s i n g  equations 
I11 -5 0 19 

Tabu la te  
results H Transfomn r e s u l t s  

using equations 
111-1025 

t 
Calculate f 

by integrating I 

i . e . , f  = J.wdq 

Fig. IW2-2.1. Calculation Procedure 
Heterogeneous Case Sc = 1.0, ~2 0 
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or 

N-2-2.1 

IV-2 -2.2 

The location of the point where f = 0 was f ixed as that 

point where equationIV-2-2.2 above was sa t i s f ied .  

values of f f o r  plus and minus values of q* were then ob- 

tained by integrat ing forward and backward from the point 

where f (qX. )  = 0, q* = 0. 

case para l le l s  t ha t  described i n  sectionrV-1-2 for %he 

The 

The remaining procedure fo r  this 

homogeneous case. 

I V - 2 - 3  SC 1 1.0, ~2 f' 0 

A schematic diagram of the calculation procedure i s  

shown i n  Figure Tv-2 -3.1. Equation 

by analyt ic  continuation using equations 

I11 -3 73 was integrated 

111 -1.45 , 
1131.46 and 111-1.47 t o  represent w, w '  and wf l  f o r  a 

Large negative value of q. 

t o  assume the values of the  constants C1 and C 5 .  Equation 

In this case, it was necessary 

111-3.73 was then integrated to a large posi t ive value of 

q. The boundary condition given by equation 111-1.49 was 

then applied. 

new values of Cl were assumed u n t i l  the  boundary condition 

given by equation 111-1.49 was satisfied. The value of 

the constant C 5  calculated from equation 

then compared w i t h  the  assumed value of C 5 .  

was repeated u n t i l  the boundary condition given by 

Keeping the assumed value of C 5  constant, 

111-3.71 w a s  

T h i s  procedure 
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Assume C 1  
a d  C 5  

Integrate Apply boundary 
E- equation -condition given by 

I11 -3 73 equation 111 -1.4: 

Transfl 
v -vebc i ty  prof i le  using equa 

using equations TTT 1 

1 

Tabulate 
resu l t s  

3rm resul ts  C alcu lat  e 

_ _ _ -  - -.- I 

- 

I 1111 -3. L Y  

Calculate a, B and 
7)0 us ing  equations 
111-5 16, I11 .-5 17 

. I11 .-5 33 

Fig.IV-2-3.1 Calculation Procedure 
Heterogeneous Case Sc f 1.0, u2 # 0 

Calculate f Calculate C 5  - by integrating w from equation 
i .e. ,  f = Jwdq 111-3 e 71 
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equation 

calculated from equation 

I I I . -1 .49  was sa t i s f i ed  and the value of  C 5  

111 -3.71 agreed with the 

assumed value. 

The function f w a s  then calculated by integrat ing w. 

It follows from equation 111-3.72 t h a t  i f  f = 0, then 

1+sc 

-cn 

I V - 2 - 3 . 1  

IV-2 -3.2 

The location of the point where f = 0 was f ixed as t h a t  point 

where equationIV-2-3.2 above was sa t i s f i ed .  

for plus and minus values of 77" were then obtained by in-  

tegraf2r-g forward and backward from the point where f ( v )  = 0, 

The values of f 

q* = 0. 

The remaining procedure for t h i s  case pa ra l l e l s  t h a t  

described in sectionIV-1-2 fo r  the homogeneous case. The 

procedure outlined i n  this section w a s  followed for one 

case of a Schmidt number of un i ty  i n  addition t o  those cases 

for which Sc # 1.0. 

C 5  can be calculated by ana ly t ica l ly  integrat ing equation 

I f  Sc = 1.0, the  value of the constant 

III.-3.71. The values of the constant C 5  calculated 

from the numerical integrat ion and the  ana ly t ic  integrat ion 

of equation 

decimal places. 

111-3.71 agreed exactly i n  the f i r s t  f i v e  



IV-3 Bterminat ion of u 

The s imi l a r i t y  solution of the turbulent mixing problem 

contains only the constant u t o  be determined experimentally. 

(See sec t ion  I11 - 2 ) .  The method o f  determining a from 

experimental data i s  as follows: 

A, the  numerical solution by the method of analyt ic  

continuation provides the u-velocity p ro f i l e  as a function 

of the s imi la r i ty  variable 6 .  Since this veloci ty  p ro f i l e  

approaches the free stream veloci t ies  asymptotically, it 

i s  f i r s t  necessary t o  sui tably define the boundary layer 

thickness. The boundary layer thickness i s  defined here 

as that distance through which the u-velocity component 

changes from u1 + .05 (u1 - u2) t o  u2 - .05 (u1-UZ). From 

the  numerical solution, the c h w e  A 5 i n  the independent 

variable 5 corresponding t o  the above mentioned change i n  

the  u-velocity component can be determined. Next, from the  

experimental data the change ~y in  the  rectangular 

coordinate y corresponding t o  the  same change i n  the u- 

veloci ty  component can be determined a t  a par t icu lar  value 

of the downstream coordinate x The constant can then 

be calculated from the relationship 

For a par t icu lar  value of 

A Y  A( = a -  
X 

It w i l l  be recal led tha t  0 i s  given by 
r 

0 = 3 j k c x  
2 

IV-3 1 

IV-3 2 

where X 1  i s  a dimensionless constant, x i s  given by 

IV-3 0 3 

and c i s  the constant of proportionali ty i n  the re la t icn-  

sh ip  expressing the l i nea r  increase of the width of the 
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mixing region b with downstream distance x, i . e ,  

b = CX IV-3.4 

Thus, if the width of the mixing region i s  defined a s  i n  

the previous paragraph, then equations Iy-3.1 andm-3.1 may 

be combined t o  give 

c =  115 
0 IV-3  0 5 

Therefore, the constantsc and x1 may be e a s i l y  calculated 

once the value of u has been determined. 
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ApPE20IX A 
NITMEIUCAL RESUETS, HOMOGEREOUS CASE 

A l e  Tabulated Results 

Table A L L -  = 0.2 

-4.897 
-4.297 
-3.697 
-3.097 
-2.497 

-1.897 
-1.297 
-0 697 
-0.097 
0 

3.103 
3- 703 
4.103 

-2.236 

-1.688 
-1.962 

-1.414 
-1.140 

-0 866 
-0.592 
-0 318 
-0.044 
0 

+O. 047 
0.321 
0.595 
0.869 
1,143 

1.417 
i . 6 g i  
1.873 

0.667 
0.669 
0 673 
0.680 
0.695 

0 0 719 
0 0 755 
0.800 
0.851 
0 9 859 

0.996 
0 999 
1.0 

0.028 
0.025 
0.019 
0.007 
-0.012 

-0.036 
-0.061 
-0 082 
-0.091 -- 
-0.091 
-0.082 
-0.065 
-0.048 
-0.034 

-0.024 
-0.022 
-0.021 
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Table A1.2, 1 = 0.4 

77 

-6.184 -2.614 0.429 0 108 
- -584 -2 360 0.431 0.105 
-4 e 384 -1.853 0.440 0.087 
-3.784 -1.599 0.451 0 068 
-3.184 -1.346 0,471 0.038 

-1.384 -0.585 0.612 -0.089 

-2.984 -2.106 0.434 0 099 

-2.584 -1.092 0 503 0.000 
-1.984 -0 839 0 549 -0.045 

-0.784 -0 331 0 688 -0. I23 

-0 184 -0.078 0 9 769 
0 0 0 794 
0.616 0 260 0.869 -0.132 
1.216 0.514 0.926 -0.110 
1.816 0.768 0 963 -0.085 
2.416 1.021 0.984 -0 067 
3.016 1-275 0.994 -0 056 
3.616 1.528 0.998 -0.051 

-0.140 -- 
fO 16 +o. 007 0 9 796 -0 141 

4.216 1- 782 1.0 -0 048 
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Table A1.3, 1 = 0.6 

rl 5 

82 

-7.809 -3.087 0.250 0.215 
-7.009 -2.778 0.252 0.212 -- -6 . 609 -2.612 0.253 
-5.809 -2 295 0 0257 
-6 209 -2.454 0.254 0.205 -- 
-5.409 -.2.109 0 261 0.190 -5 . 009 -1.980 0.266 -- 
-4.209 0.285 -- 
-3.809 -1.505 0.300 0.120 

-4.609 -1.820 0.274 0.164 

0.321 -- 
0.058 

-2.609 -1.031 0 . 380 
-0 . 873 0.422 0.018 -2 . 209 -1.809 -0 715 0.471 -- 

-3 409 -1.397 
-- -3.009 -1.189 0 0 347 

-0 0 557 0 527 0.093 -1.409 -- 
-0.144 

-1.009 -0.399 0 590 
-0.609 -0 241 0.656 
-0.209 -0.083 0.723 
0 0 0.756 

fO. 191 f O  .075 0.786 -0 155 

-- 
-- 

1.391 
1.791 
2.191 
2.591 
2.991 
3.391 
3.791 
4.191 
4.391 

0.234 0.843 -- 
0.891 0.131 
0 0 929 

0.094 0 550 
0 708 0.956 
0 866 0 975 

-- 0 0 392 

-- 
1.024 
1.182 
1.340 
1.498 
1.656 
1.736 

0 . 986 
0.993 
0 997 
0 0 999 
0 999 
1.0 

0.071 

0 . 056 
-- 

0.059 -- 
-- 



Table A1.4, X = 0.8 

5 

-9 986 

-9.186 

-80 386 

-7 986 
-7 586 
-6 0 786 
-6 386 

-5.986 
-5 586 
-5.186 
-4 786 
-4.386 

-3 986 
-3 0 586 
-3.186 
-2.786 
-2.386 

-1.986 
-1.186 
-0 0 786 
-0 0 386 

-9 586 

-8 786 

-7 186 

-1.586 

0 
0.414 
0 814 
1.2 14 
1.614 

2.014 
2.414 

3.214 
3.614 

4.014 
4.414 

2.814 

-3 720 
-3 571 
-3 0 422 
-3 0 273 
-3. I24 

-2 0 975 
-2.826 
-2.677 
-2.528 
-2 0 379 
-2.230 
-2 081 
-1.932 
- 1 0  783 
-1- 634 

-1.485 
-1.336 
-1.187 
- 1.038 
-0.889 

-0 740 
-0 -O 0 

-0 a 293 
-0 144 

0 
0.154 
0,303 
0 452 
0.601 

0 0 750 
0 899 
1.048 
1.197 
1.346 

1.495 
1.645 

0.111 
0.112 
0.112 
0.112 
0.113 

0.114 
0.115 
0.117 
0 0 119 
0.123 

0.127 

0.142 

0.168 

0.186 
0.211 
0.241 
0 278 
0.324 

0 0 377 
0 0 439 
0 507 
0 580 
0.655 

0.725 
0 0 795 
0 853 
ongo1 
0 a 937 
0 962 
0 9 979 
0 989 
0 995 
0 998 

0 999 
1.0 

0- 133 
0.153 
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Table A l . 5 ,  X = 1.0 

77 5 

-9 0 376 
-8.976 
-8 576 
-8.176 
-70 776 

-6.976 
-6.576 
-6 176 
-5 776 

- e376 
-2.976 

-4.176 

-7 0 376 

-4 o 576 

-3 0 776 

-3 376 
-2 976 
-2.576 
-2.176 
- 1.776 

-0.976 
-0.576 
-0.176 

-1.376 

0 

0.224 
0.624 
1.024 
1.424 
1.824 

2.224 
2.624 
3.024 
3.424 
3.824 

4.224 
4.624 

-3.315 

-3 032 

-2.750 

-3.174 

-2 ., 8 9 1  

-2 608 
-2.467 

-2.184 
-2 042 

-10901 
- 1.760 
-1.618 
-10 477 
-10 335 

-2 325 

-1.194 
-1.052 
-0.911 
-0.769 
-0.628 

-0 ., 487 

-0.20 -O *342 
-0 062 
0 

0 079 
0.221 
0.362 
0.504 
0.645 

0.786 
0.928 
1.069 
1.211 
1.352 

1.494 
1.635 

0.004 
0.005 
0.006 
0 0 009 
0.011 

0.914 
0.018 
0.024 
0.030 
0.038 

0.049 
0.062 
0.078 
0 0 099 
0.124 

0.156 
0 194 

0 0 354 

0.423 
0 499 
0 578 
0 657 
0.691 

0.733 
0.802 
0.861 

0.942 

0.966 
0.981 
00991 
0.995 
0.998 

0 0 999 
1.00 

0 239 
0 239 

0 0 907 

0.4215 

0.4131 
0.4074 
0.4004 

0.3921 

0 3703 

0.4178 

-- 

0.33% 
-- 

0 2931 
-- 

0 0 2337 -- 

0.1583 -- 
0 0613 

-0.0166 

-0.0863 
-0.1180 

-- 

-- 

-- 
-- 

-0.1182 

-0.0909 
-- 
-- 

-0 0510 

-0.0208 
-0 0344 

-0.0123 
-0 0057 
-0 o 0033 

-0.00 lo 
-0.0007 



A2. Calculated Constants 

Table A 2 . 1  

x B 

0.2 0 18973 0 22382 -0 23465 -0.10710 

0.4 0 32339 0 45013 -0.43619 -0.18431 
0.6 0.41790 0 68622 -0.55488 -0.2 1934 

0.8 0.48400 0 93367 -0 58057 -0.2 1638 

10 0 0 9 53007 -- -0 53007 -0 18743 
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APPENDIX B 

NUNE3RICAL RESULTS, HETEROGET\IEOUS CASE 

B1, Tabulated Results, Sc = L O  

Table B1.1, r = -0.2, = l o o  

77 5 P 

- 14.157 
-13 757 
-13.357 
-12.959 
-12 557 
-12 159 
- 11.757 
-11.357 
-10.957 
-10 557 
-10 157 
-9 757 
-9 9 357 
-8.957 
-8 557 
-8.157 
-7.957 
-6 957 
-6 9 557 
-6.157 

-5 ' 757 
3:;;; 

-5 ., 005 
-4.864 
-4.722 
-4.581 
-4 440 

-4 298 

-3.874 
-3 0 732 

-4.157 
-4.015 

-3. -3* zgl 50 
-3 308 
-3 0 167 
-30 025 
-2.884 
-2.742 
-2 460 
-2 0 318 
-2.177 

-1.894 
-2 0 035 

-1.753 

1.000 
1.000 
1.000 
1.000 
0 0 999 

0 999 
0 0 999 
0 999 
0.999 
0 0 998 

0.998 
0.997 
0 0 997 
0.996 
0 9 995 
0.994 
0 0 993 
0 9 989 
0.986 
0 983 

0 379 
0 974 
0 . 968 

0.000 
0.001 
0.001 
OOOOl 
0.001 

0.001 
0.002 
0.002 
0.003 
0.003 
0 004 
0.005 
0.006 
0.008 
0.010 

0.012 
0.015 
0.023 
0.028 
0 0 035 
0.043 
0.053 
0.066 

0,378 -- 
0 377 

00 
0 0 375 

0 373 
-- 

0.3;; 

0.364 

0.356 
0 346 

-- 

-- 
-- 

0.331 
0.310 -- 
0 e 282 

-- 
0.245 -- 



Table B1.1 (Continued) 

77 E P 

-3 9 757 
-3 357 
-2 957 

-2 557 
-2 0 157 
-1.757 
- 1.357 
-0 9 957 

-0 0 557 

0.443 
0.843 

f O . 0  -O 3 

1.243 
1.643 
2.043 
2 443 
2 e 843 

3.243 
3.643 
4.043 
4.643 

-1.611 
-1.470 
-1.378 

-1.045 
-1.187 

-0.904 
0.763 
-0.621 
-0 480 
-0 0 338 

-0 197 
-0.056 
+0.015 
0.157 
0.298 

0 0 439 
0.581 
0.722 
0,864 
1.005 

1.147 
1.288 
1.429 
1.642 

0.961 
0.953 
0.942 
0 930 
0.916 

0. goo 
0.881 
0.860 
0.838 
0.815 

0 790 
0.766 
0 0 754 
0 9 733 
0.714 

0 0 699 
0.687 
0 679 
0 670 
0 669 
0 668 
0 - 667 
0.667 

0 ., 674 

0.081 
0. l oo  
0.120 
0.150 
0.183 
0.223 
0 270 

0 387 
0 0 457 

0.324 

0 729 
0 800 

0 861 
0 909 
0 945 
0 969 
0 0 983 
0 992 
0.996 
0 998 
1.000 

-- 
-0 e 013 -- 
-0.085 

-0.134 

-0 145 
-0. I22 

-- 
-- 

-- 
0.085 

0.0;; -- 
-0.011 -- 
-0 003 
-0.001 
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Table B1.2, r = -1/3, = 1/3 

rl P 
U 
u1 
- 

0 0 999 0.500 +o .ooo 
-2. 16 0.998 0.501 -- 

- .178 -2.242 0.502 -0.002 0 997 
-5 978 

-4 378 -1.896 0 990 0 0 505 -0.010 

-3 9 978 -1.723 0.984 0.508 -- 
-3.178 -io 376 0.962 0.520 
-2.778 -1.203 0.944 0 530 
-2.378 -1.030 0.921 0.543 
-1.978 -0.857 0.891 0.561 -0 78 
-1.578 -0.683 0 856 0.584 -- 
-1.178 -0 510 0.815 0.613 -0 113 
-0.778 -0 337 0.771 0.649 -- 
-0.378 -0.164 0.724 0.690 -0 139 

-- 
-2 z89 -5 578 

-?.778 -2.069 0 0 994 0 9 503 

-0 023 -- -3 0 578 - 1.549 0 975 0.513 
-0.046 -- 

-0.78 
0 

+O. 022 
0.422 
0.822 

1.222 
1.622 
2.022 
2 422 
2.822 

-0 077 
0 
0.010 
0.183 
0 356 

0 529 
0.702 
0 876 
1.049 
1.222 

0.701 -- 
0.678 
0 635 
0 9 598 

0 567 
0 9 543 
0.526 
0 0 515 
0.508 

-- 0.713 0.734 -- 
-0.142 0 737 

0 787 
0 e 836 -0.125 

-- 

3,222 1.395 0.504 0 0 992 -0.014 
4.022 1.742 0.501 0 999 -0 005 
4.622 2.002 0.500 1.000 -0 003 

88 



Table B L 3 ,  r = -1/3, X = 0-6 

77 P 
U 
Ul 
- 

-8.288 

-7.488 
-7.888 

-7.088 

-6.288 
-5.888 
-5.488 

-6 688 

3: 2% 
-4.288 
-3.888 
-3.488 

-2 0 688 

-2.888 
- 1.888 

-3.088 

-1.488 
-1.088 
-0 688 

-0.288 
-0.088 
0.00 
0.112 
0.512 

0.912 
1.312 
1.712 
2.112 
2.512 

2.912 
3.312 
3.712 
4.112 
4.512 

-3 275 
-3.118 
-2 0 959 
-2.801 
-2.643 

-2.485 
-2 237 
-2.169 
-2.011 
- 1.853 

-1.695 
-1.537 
-1.378 
-1.220 
-1.062 

-0.904 
-0.746 
-0.588 
-0.430 
-0.272 

-0.114 
-0 035 

0 
-0.044 
0.202 

0.360 
0.519 
0 0 677 
0 835 
0 9 993 

1.151 
1.309 
1.467 
1.625 
1.783 

0 999 
0.999 
0.998 
0.997 
0.996 

0.994 
0.991 
0 987 
0.981 
0 973 

0.963 
0.950 
0 933 
00912 
0 886 

0 857 

0.786 

0,706 

0.665 

0.628 
0 596 

0.566 

0.516 

0.823 

0,746 

0.646 -- 

0.544 
0 527 

0 509 

0.504 
0 502 
0.501 
0,500 
0.500 

0 250 
0.251 
0.251 
0.252 
0 253 

0 255 
0.257 
0.260 
0.264 
0.271 

0 9 279 
0.290 
0.304 
0 323 
0.346 

0 375 
0 411  
0.454 
0.505 
0 563 

0 627 

0.676 
0 9 695 
0 762 

0.825 
0.880 
0 923 
0 954 
0 974 

0 967 
0 994 
0 9 997 
0 999 
1.000 

0 661 

0.098 

0.096 

0.091 

0.082 

0 065 

0.038 

0 0 000 

-- 
-- 

-- 
-- 
-- 

-- 
-- 

-0,051 

-0 0 log  

-0 . 163 

-- 

-- 
-- 

-0.196 -- 
-- 

-0.198 -- 
-0.173 

-0.123 

-0.081 

-- 

-- 

-- 
-0.060 

-- 
-0.052 

-- 
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Table B1.4, r = -1/3, = 0.8 

rl 5 P 
av 
u1 
c 

-10.767 
-10.367 
-9 0 967 
-9 567 
-9.167 
-8.767 
-8 367 
-7 0 967 
-7 567 
-7.167 
-6.757 
-6 637 
-5.967 
-5 9 567 
-5 0 167 
-4 767 
-4.367 
-3 9 967 
-3 567 

-2 767 

-1.967 

-0.767 
-0.367 
-0 137 
0 000 
0 033 
0 433 
0 833 
10 233 
1.633 
2 0 033 
2.433 
2 833 
3.233 
3.633 
4.033 
4 433 

-3 167 

-2 367 
- 1.567 
-1.167 

-4.011 
-3.862 

-30 564 
-3.415 
-3.713 

-3.266 

-2.968 
-2 819 
-2 270 
-2.521 

-3.117 

-2 0 372 
-2.223 

-1.925 
-10776 

-2.074 

- 1.627 
-1.478 
-1.329 
-1.180 
-1.031 
-0.882 
-0 733 
-0.584 
-0.435 
-0 286 
-0 0 137 
-0.062 
0.000 
0.012 
0.161 
0.310 
0 0 459 
0.608 
0 0 757 
0.906 
1.055 
1.205 
1.359 
1.503 
1.652 

1.000 
0 0 999 
0 .a 999 
0 0999 
0.998 
0 997 
0.996 
0.995 
0.993 
0.991 
0.988 
0.984 
0 0 979 
0 0 972 
0.964 
0.954 
0,941 
0.926 

0.885 
0.860 
0.832 
0 800 
0 765 
0 729 
0.691 
0 0 655 

0 e 620 
0 589 
0 563 
0.542 
0.527 
0,516 
0 509 
0.504 
0.502 
0.501 
0.500 
0.500 

0 0 907 

0.637 
-- 

0.111 
0.112 
0.112 
0.112 
0.113 
0,113 
0 114 
0.115 
0.117 
0.119 
0.122 
0.126 
0.130 
0 137 
0 144 
0 154 
0 167 
ob 183 
0.202 
0.226 
0.255 
0.291 
0 334 
0 384 
0.442 
0.508 
0 580 
0.618 

0 656 

0.801 
0 862 
0,910 
0.946 
0 970 
0.984 
0 892 
0 997 
0 999 
1.000 

0.649 

0.731 

0.211 

0.209 
0.207 

0.202 

0 193 

e- 

-- 

-- 
-- 
-- 

0.180 

0 160 
-- 
-- 

0 a 132 
-- 

0.092 -- 
0.040 

-0.023 
-- 

-- 
-oo0g1 

-0 154 
-- 

-- 
-0 193 -- 

-- 
-0 0 197 

-0.175 

-0.326 

-0.082 

-0.058 

-0.050 

-- 

-- 

-- 
-- 
-- 
-- 



. ~- 

Table ~1.5, r = -0.4, A = 1.0 

77 5 P 

-10 976 -3. h 1 0.30 
-10.376 -3 0 668 
-9 776 
-9 376 
08 976 
-8.576 
-8.176 
-7.776 
-6.976 
-6.576 
-6,176 
-5 0 776 
-5 376 
-4 976 
-4.576 
-4 176 
-3 776 
-3 376 

-2.576 

-7 0 376 

-2 976 

-2 176 
-1.776 
- 1.376 
-0 976 
-0 576 
-0 176 
0 
0.024 
0.424 
0.824 
1.224 
1.624 
2 024 
2.424 
2.824 
3.224 
3.624 
4.024 
4.424 
4.824 

-3 456 
-3 315 
-3.173 
-3 032 
-2.891 
-2 0 749 
-2.608 
-2 466 
-2 0 325 
-2.184 
-2 042 
-1.901 
-1- 759 
-1.618 
- 10 476 
-1.335 
-1.194 
-1,052 
-0.911 
-0 0 769 
-0 628 
-0.486 
-0 0 345 

-0.062 

+O , 008 
0.150 
0.291 

0 9 574 

0 857 
0 998 
1.140 
1.281 
1.423 
1.564 

-0 204 

0 

0 . 433 
0 . 716 

1.706 

0 993 
0 990 
0.988 
0 . 986 
0 983 
0,980 
0 0 976 
0 971 
0 965 
0 959 
0.951 
0.941 
0 930 
0.917 
0 902 
0.885 
0 , 864 
0,841 
0 . 815 
0 . 786 
0.755 
0,720 
0.684 
0 . 647 
0.609 
0 0 573 
0 e 566 
0,525 
0 497 
0.475 
0.4 7 
0 439 
0.434 
0 431 
0.430 
0.429 
0.429 

0 439 

0.429 

0.006 
0.007 
0.009 
0.011 
0.013 
0.016 
0.019 
0.022 
0.027 
0.032 
0 039 
0.047 
0.056 
0 . 068 
0 081 
0 098 

0 170 

0.291 
0 0 347 
0.410 
0.481 
0 559 
0 594 
0 599 
0.680 
0 9 758 
0.827 
0 885 
0 0 929 
0 959 
0 978 
0 989 
0 995 
0,998 
0 0 999 
1.000 

0.118 
0.141 

0.204 
0.244 



Table B1.6, r = -0~6, = 1/3 
- 

77 5 P 
UV 
u1 c 

-5 719 
-?*319 - -917 
-4.519 
-4.119 

-3 719 
-3 319 
-2 919 
-2 519 
-2 0 119 

-1.719 
-1.319 
-0.919 
-0 519 
-0.119 

0.081 
0.481 

1.281 
1.681 

2 ,, 481 
2 881 

3.681 

4.081 
4.481 
4.881 

0.881 

2.081 

3.281 

5.081 

-2.476 
-2 o 303 
-2 130 
-1.957 
-1.784 

-1,610 
- 1.437 
-1.264 
-1.091 
-0 918 

-0 0 744 

-0 225 
-0.052 

0 035 
0.208 
0.381 
0 555 
0.728 
0.901 
1.07’C 
1.248 
1.421 
1.594 
1.767 

-0 571 
-0.398 

1.940 
2 113 
2.201 

0 997 
0 0 995 
0.991 
0.986 
0 977 
0 963 
0 945 
0,919 
0 886 
0.845 

0.795 
0 0 738 
0 675 
0 609 
0 543 

O T - O  0. 50 
0.396 
0 0 352 
0 0 317 
0.291 
0 274 
0.263 
0.257 
0,253 
0,251 
0.251 
0.250 
0.250 

0 500 
0.501 
0.501 
0 502 

0 506 
0.510 
0 0 515 
0,521 
0.531 
0 543 
0 559 
0.580 
0.607 
0 640 

+O 660 

0,504 

0.702 
0.754 
0.807 
0 9 859 

0.905 
0.941 
0 9 967 
0.983 
0 0 992 
0.996 
0 998 
0 999 
1.0.00 

-0 048 

-0.051 

-0.056 

-0 e 065 
-0.080 

-0 0 ogg 
-0.121 

-0.134 

-0.134 
-0 e 114 

-- 
-- 

-- 
-- 
-- 

-- 
-- 

-- 
-- 

0.056 

+O 016 

0.067 

0 087 

-- 
-- 
-- 

-- 
0.092 -- 



. 

Table Bl .7 ,  r = -0.6, = 0.6 

77 5 P 

-8.366 
-7.966 

-7.166 
-7.566 

-6,766 

-5 566 

-6 366 
-5.966 

3: +E 
-4.366 
-3.966 

-3 166 
-3.566 

-2 766 

-1.566 

-0 766 

-2 . 366 
-1.966 

-1.166 

-0.366 

0 034 
0.434 
0.834 

1.634 
2 034 
2 434 
2 834 
3.234 
3.634 
4.034 
4.434 
4.134 

1.236 

-3.306 
-3.149 
-2.990 
-2 ., 832 
-2 674 
-2 516 
-2.358 
-2 0 200 
-2.042 
-1.884 
-1.727 
-1.568 

-1.251 
-1.409 

-10093 
-0 935 
-0 771 
-0.619 
-0.461 

-0.145 

+0.013 
0.172 
0 330 
0 488 
0.646 
0.804 
0 962 
10 I20 
1.278 
1.436 
1.594 
1.753 
1 .911  

-0 303 

0.998 
0 997 
0 995 
0 0 993 
0 989 
0.984 
0 9 977 
0.968 
0 956 
0.941 
0.921 
0.896 
0.867 
0.832 

0 696 

0 9 587 
0 531 
0 0 477 

0.427 
+oD 382 

0 344 
0.314 
0.291 
0 295 
0.261 

0.250 
0.251 
0.250 
0.250 

0.791 
0.746 

0 642 

0 0 257 
0.254 

0.250 
0.251 
0.251 
0.252 
0.253 
0.254 
0.256 
0.258 
0 ,261  
0.266 
0.271 
0 279 
0.288 
0.301 
0 316 

0 0 359 
0 9 389 
0 426 
0.471 
0 524 

$0 586 
0.654 
0.726 
0 797 
0.860 
0.911 
0.948 
0.972 
0.986 
0.994 
0.997 
0.999 
1.000 

0 0 335 

-0 . 002 

-0.004 
-- 

-- 
-0 ., 008 

-0.016 

-0.029 

-- 
-- 
-- 

-0 ., 048 
-- 

-0 073 
-- 

-0.107 
-- 

-0 a 146 

-0 e 188 
-- 
-- 

-0.217 -- 
-0.221 

-0.196 
-- 

-- 
-0 e 132 

-- 
-0.063 

-0,021 

-9 006 

-0,001 

-- 

-- 

-- 
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7) 5 P 
u 
u1 

-11.622 
-11.221 
-10.822 
-10.422 
-10.022 

-9.622 
-9.222 
-8.822 
-8.422 
-8.022 

-7.622 
-7 0 222 
-6.822 
-6 422 
-6 . 022 
-5.622 
- .222 
-3.822 
-4.422 
-4.022 

-3 622 
-3.222 
-2.822 
-2 422 
-2.022 

-4 330 
-4.181 
-4.032 
-3 ., 883 
-3 734 

-3.585 
-3 436 
-3.287 
-3 0 138 
-2 . 989 
-2.840 
-2.691 
-2.542 
-2 . 393 
-2.244 

-2 095 
-1.946 
- 1.797 
-1.648 
-1.498 

- 1,349 
-1.200 
-1.051 
-0 902 
-0 0 753 

0.999 
0 0 998 
0.998 
0.996 
0 996 

0,994 
0 992 
0 0 989 
0.986 
0.981 

0 9 976 
0 969 
0.960 
0.949 
0 936 
0.921 
0.902 
0.880 
0 0 855 
0.826 

0 793 
0 756 
0 715 
0.671 
0.625 

0 0 111 
0.112 
0.112 
0.112 
00112 

0 . 113 
0.114 
0 114 

0.117 

0.119 
0.121 
0.123 
0.127 
0 131 

0 143 

0 . 115 

0- 137 
0.151 
0.161 
0.1-71 
0.186 
0.207 
0 . 229 
0.256 
0.289 

+O . 105 
0.104 
0.101 

0.098 

0.091 

0.082 

0.069 

0.050 

0.025 
-0 e 008 

-0.048 

-0.096 

-0.150 

-- 
-- 

-- 
-- 
-- 

-- 
-- 

-- 
-- 
-- 

-- 
-- 
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Table B1.8 (Continued) 

r) P 
uv 
u1 
- 

- 1.622 -0 0 604 0 577 0 329 -- 
-1.222 -0 0 455 0.528 0 376 
-0.422 -0.157 0.434 0 497 
-0.022 -0 008 0 392 0 570 

-0 0 202 

-0 238 
-- -0.822 -0 306 0 480 0.432 
-- 

0 
1-0.066 
0,215 
0 364 
0.513 0.290 

1.778 0.662 0.275 
2.178 0.811 0.264 

2 978 1.110 0.254 
2 578 0.960 0.258 

3.378 1.259 0.252 

3 778 1.408 0.251 
4.178 1 0  557 0.250 
4 378 1.631 0.250 
4.778 1.780 0.250 

0.836 
0.894 
0 936 
0.965 
0.982 
0.991 
0 996 
0 0 998 
0 0 999 
1.000 

-- 
-0.243 

-- 
-0.209 

-0.145 -- 
-0.089 

-0 e 060 
-- 

-- 
-0.050 -- 
-0. 049 
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Table BL9, r = -0.6, = 1.0 

5 P 

-15.267 
-14.867 
- 14.467 
-14.067 
- 13.667 
-13.267 
-12,867 
-12.467 
-12.067 
-11.667 

-11.267 
-10 867 
- 10 . 467 
-10.067 
-9.667 

-8 867 
-8 467 
-8.067 

-9 0 267 

-7 667 
-7.267 
-6.867 

-6.067 
-6.467 

-5 667 

-5 0 398 
-5.256 
-5.115 
-4,973 
-4.832 

-4.691 
-4.549 
-4 408 
-4.266 
-4. 125 

-3 983 
-3.842 
-3.701 
-3 559 
-3.418 
-3.276 

-2.852 
-2.711 

-2 -2. T9 28 
-2.286 

-3- 135 
-2.994 

-2.00 -2-14? 

0 996 
0.995 
0 994 
0 993 
0 992 
0.991 
0 990 
0 988 
0.986 
0.984 

0.982 
0 979 
0 975 
0-971 
0.967 
0.960 
0 0 956 
0 949 
0.941 
0 0 932 
0,921 
0 909 
0.896 
0 880 
0.863 

0,001 
0 D 002 
0 0 002 
0.002 
0.003 

0.003 
0.004 
0.003 

0.005 
0.005 

0.006 
0.007 
0.008 
0.010 
0.011 

0.013 
0,015 
0.018 
0.021 
0.024 

0.028 

0 039 
0.045 
0.053 

0,033 

0.254 -- 
0,251 -- 
0,248 

0.244 
-- 
-- 

0,238 -- 
0 232 

0 a 223 
0.213 

-- 
-- 

-- 
0.200 

0.183 
-- 
-- 

0.163 -- 
0.138 

0.108 
-- 
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Table B1.9 (Continued) 

rl P 
U 
u1 
- 

-5 267 
-4 467 
-4 . 867 
-3.667 
-4.067 

- 1.862 
-1.721 

0.843 
0.821 
0.796 
0 769 
0 0 739 

0 062 
0.073 
0.085 
0.100 
0.118 

-- 
0.072 

0.028 
-- - 1.379 

-1.438 
-1.296 

03,267 
-2.867 
-2.467 
-2.067 
-1.667 

-1.267 
-0.867 
-0.067 
-0.467 

0 

-1.155 
-1.014 

0,705 
0.670 
0.631 
0.591 
0.550 

0 139 
0 164 
0.195 
0.230 
0.273 

-0; 022 

-0.078 
-- 
-- 

-0 a 135 

-0.872 
-0 731 
-0 0 589 
-0.448 0 9 507 

0.465 
0.425 
0 387 -- 

0.324 
0 383 
0.451 
0 527 
0.541 

-0 a 307 
-0 165 
-0.024 

0 

0.118 
0,259 
0.401 
0.542 
0.683 

0 354 

0.283 
0.325 
0.301 

0.270 

0.609 
0 693 
0 773 
0.843 
0 0 899 

1.533 
1.933 

0 825 
0.966 
1.108 
1.249 
1.391 

0.262 
0.256 
0.253 
0.251 
0,250 

-0.062 
-0.021 

-- 
-- 

-0 . 005 3.533 
3.933 

4 333 
4.733 
4.933 

1.532 
1.673 
1.744 

0 250 
0.250 
0 . 250 

0 999 
0 999 
1.000 

-- 
-0.002 
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Table R1.1_0, r = -0.75, X = 1/3 

rl 5 P 
U 
Ul 
- QV 

u1 
- 

-2- 385 
- 0985 
-4.585 
-4.185 
-3 785 
-3 0 385 
-2.985 
-2.585 
-2.185 

-1.385 
-0.985 
-0.585 
-0.185 
-1-0.015 

-1-0.415 
+o. 815 
1.2 15 
1.615 
2.015 

2.415 
2.815 
3.215 
3.615 
4.015 

4.415 
4.815 
5.015 
5.415 

-1.785 

-2 332 
-2 o 159 
-1.986 
-1.812 
- 1.639 
-1.466 
-1.293 
-1.119 
-0 946 
-0 773 
-0 . 600 
-0 080 
-0.006 

0.180 
0 0 353 
0.526 
0.700 
0 873 
1.046 
1.219 
1.392 
1.565 
1.739 
1.912 
2 085 
2.172 
2 345 

-0.427 
-0.253 

0.995 
0.991 
0 0 985 
0.975 
0.961 

0.941 
0.914 
0.878 
0.834 
0.780 

o 650 0,719 

0 577 
0°203 0 .  67 

0 398 
0.232 
0.335 
0 238 
0.205 

0 165 
0.181 

0.149 
0.146 

0.144 
0.143 
0 .l43 
0.143 

0 0 155 

0 500 
0.501 
0.501 
0 502 
0 503 

0.505 
0.505 
0.512 
0 517 
0 523 
0 533 
0 9 545 
0 561 
0 582 

0 626 
0 665 

0 0 585 

0.713 
0 e 824 
0 767 

0 878 
0 0 923 
0.956 
0.977 
0.989 

0.995 
0 998 
0 999 
1.000 

-0.062 
-0 e 064 
-0 e 068 

-- 
-- 

-- 
-0 0 075 -- 
-0.084 -- 
-0.097 -- 
-0.098 -- 
-0.113 

-0.100 

-0.045 

-- 
-- 
-- 

fO 050 

0 143 

0.194 

0.210 

-- 
-- 

-- 

0.2G 



Table B1.11, I: = -0.75, = 0.6 

77 5 P 

-8 396 
-7.996 
-7 9 596 
-7.196 
-6 0 796 
-6.396 
-5 0 996 
-5 596 
-5 196 
-4.796 
-4.396 
-3.996 
-3.596 
-3.196 
-2 796 
-2.396 
-1.996 
-10 596 
-1.196 
-0.796 
-0 396 
-0.196 
0 

+O. 004 
0.404 
0.804 
1.204 
1.604 
2.004 
2.404 
2.804 
3.204 

4.004 
4.404 
4.804 
5.204 

3.604 

-3 319 
-3.160 
-3.002 
-2 844 
-2 . 686 
-2 528 
-2 370 
-2.212 
-2.054 
-1.896 
-1.738 
- 1.579 
$1.421 
- 1,263 
-1.105 
-0.947 
-0 789 
-0 631 
-0.473 
-0.315 
-0.157 
-0.077 
0 
0.002 
0.160 
0.318 
0.476 
0.634 
0 792 
00950 
1.108 
1.266 
1.424 
1.583 
1.741 
1.899 
20057 

0 996 
0 995 
0 992 
0.988 
0 983 
0.475 
0 965 
0.953 
0 936 
0.915 
0 890 
0.860 
0.823 
0.782 
0 a 735 
0.684 
0 628 
0 0 570 
0,510 
0.451 

0.368 

0.342 
0.295 
0.254 
0.220 
0.194 
0.175 
0.162 

0.394, 
-- 

0 153 
0.148 
0.146 
0.144 
0.143 
0.143 
0.143 

0 250 
0.251 
0.251 
0.252 
0.052 
0 053 
0.256 

0,262 
0.265 

0.254 

0,259 

0.270 
0.277 
0.285 
0.285 
0.308 
0.324 
0.344 
0 370 
0.402 
0.442 
0.465 
0 . 490 
0.491 
0 0  549 
0.617 
0.692 
0 768 
0.838 
0 897 
0.940 
0.968 
0.984 
0 993 
0.997 
0 0 999 
1.000 

-0.061 
-0 e 062 

-- 
-- 

-0 067 
-- 

0 a 072 -- 
-0 . 081 -- 
-0.093 

-0.111 

-0 e 134 

-- 
-- 
-- 

-0 e 161 

-0.190 
-- 

-- 
+O a 055 -- 
+O. 091 

0 D 101 
0.103 
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Table B1.12, r =  -0.75, = 0.75 

77 5 P 
uv 
u1 
- 

-10.452 
-9.652 

-7.052 
-8.852 

-7 252 
-6.452 
-5.652 
-4.052 

-1.652 
-0.852 

-4 . 852 
-3.252 
-2 452 

i -0 .1  -O OZ2 8 

0,948 
1.748 
2 548 
3.348 
4.148 
4.948 

-3.950 
-3., 648 
-3.345 
-3.043 
-2.741 

0 143 
0 144 
0.145 
0.147 
0.150 

-2.438 
-2.136 
-1.834 
-1.531 
-1.229 

-0 927 
-0 624 
-0.322 
-0.020 
-1-0.056 

0 358 
0.661 
0 963 
1.265 
1.568 
1.870 

0.928 
0.888 
0 835 
0.766 
0.681 

00?84 0. 80 
0 9 379 
0 290 
0.270 

0.208 
0.170 
0.152 
0.145 
0.143 
0.143 

0.154 
0.161 
0 171 
0.187 
0,210 

0.245 
0.298 

0.528 

0.687 
0.842 

0 0 377 
0 493 

0.942 
0 o 985 
0 0 997 
1.000 

-0 003 
-0.005 
-0 008 
-0.014 
-0 0 022 

-0 033 
-0.049 
-0.069 
-0 095 
-0. I20 

-0 164 
-0.205 

-0.261 
-0.260 

-0.069 
-0. odg 
-0.018 
-0.005 
-0.001 

-0.241 

-0.227 



Table B1.13, r =-0 -75, X = 1.0 

rl 5 P 

-17.451 
-17.051 
-16.651 
-16.251 
-15.851 

-15 451 
-15 051 
-14.651 
-14.251 
-13.851 

-13.451 
-13.051 
-12.651 
-12.251 
-11.851 

-11.051 
-10.651 
-10.251 

-11.451 

-9 0 851 

-9 451 
-9 051 
-8.651 
-8.251 
-7.851 

-7.451 
-7.051 
-6.651 
-6.251 
-5 851 

-6.170 
-6.028 
-5.887 
-5.746 
-5.604 

-5.463 
-5.321 

-5 038 
-4.897 

-4.756 

-5 180 

-4,614 
-4.473 
-4.331 
-4.190 

-3 907 
-3 76 1 
-3 624 
-3.483 

-3.341 
-3.200 
-3.059 
-2.917 
-2.776 

-2.634 
-2.493 
-2 351 
-2.210 
-2 , 069 

-4,049 

0.991 
0 0 990 
0 989 
0.988 
0.986 

0,984 
0.982 
0.980 
0 978 
0 9 975 

0 972 
0.968 
0.965 
0.960 
0 0 955 

0.9 4 
0 937 
0 929 
0.921 

0.911 
0.901 
0.889 
0.876 
0.861 

0.845 
0.828 
0.808 
0 787 
0 763 

0.9y 

0.001 
0.002 
0.002 
0.002 
0.002 

0 003 

0.004 
0.004 

0 003 
0.003 

0.005 
0.005 
0.006 
0.007 
0.008 
0 0 009 
0.010 
0.011 
0.013 
0,014 

0.016 
0.018 
0.021 
0.024 
0.027 

0,031 
0.035 
0 040 
0.045 
0.052 

lo 1 



Table B1.13 (Continued) 

rl 5 P 
U 
u1 
- uv 

u1 
- 

-5.451 

-4.651 
-4.251 
-3.851 
-3.451 

-50 051 

-3.051 
-2.651 
-2.251 
-1.851 

-1.051 
-0.651 
-0.051 

+O .14g 
0 549 
0.949 
1.349 
1. 749 
2.149 
2.549 
2.949 
3 0 349 
3.747 
4.149 
4.549 
4.949. 

-1.451 

0 

-1.927 
-1.786 
-1.644 
-1.503 
-1.362 
-1.220 
- 1.079 
-0 937 
-0 . 796 
-0.654 

-0 0 513 
-0 372 
-0 e 230 
-0.018 

0 

+O. 053 
0.194 
0 336 
0 477 
0.618 

0.760 
oog01 
1.043 
1.184 
1.325 
1.467 
1.508 
1.750 

0 0 738 
0-711 
0.681 
0.649 
0.615 

0 579 
0.541 
0.502 
0 . 463 
0.422 

0 383 
0 0 343 
0.306 
0.256 

0.241 

-- 

0.215 

0.176 
0.164 

0.155 

0.193 

0.14 

0.143 
0.143 

0 0 1.43 

00059 
0 068 
0 . 078 
0 0 090 
0.104 

0.121 
0.141 
O 00 19 
0.228 

0.269 

0.484 
0.319 
0 377 
0.494 
0.524 
0.608 
0 695 
0 850 
0.906 
0,946 
0.986 
0.994 

0 997 
0 0 999 
1.000 

0 0 778 

0 0 972 

0 029 -- 
-0 004 

-0.044 
-- 

-- 
-0 . 088 -- 
-0 a 137 -- 
-0.186 -- 
-0.025 
-0 238 -- 
-0 0 237 
-0 203 

-0 e 131 

-- 
-- 

-- 
-0.060 

-0.019 

-0.004 

-0.001 

-- 
-- 

-- 
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B2. Tabulated Results, Sc = 0.75 and 0 , 5  

Table B2.1, Sc = 0.75, r = -0.6, X = l/3 

rl 5 P u 
u1 

uv 
u1 
- 

-5.846 
-5.046 
-4.246 
-3 . 446 
-2 646 

-1- 846 
-1,046 
-0,246 
0.00 

+O. 154 

Q 0 954 
1.754 
2.554 
3.354 

-2 531  

-1.839 
-1.492 

-2.185 

-1.146 

-0 9 799 
-0 . 453 
-0.107 
0.00 

+o. 067 

0 413 

1.452 

0.760 
1.106 

1.800 
2.146 

0,991 
0 977 
0 949 
0 . 898 
0.818 

0.711 

0.  75 

0.425 

oq91 
-- 

0.346 
0.296 
0 . 268 
0.256 

0.252 
0 . 250 

0.500 
0.502 
0 505 
0.512 
0.528 

0 558 
0.610 
0.689 

0.838 
0.922 
0 972 
0 993 

0 999 
1.000 

-0.010 

-0.019 

-0.052 

-- 
-- 

-- 
-0 . 113 
-0.135 

-0 e 136 
-- 

-- 
-0 064 

+O. 007 
-- 



Table B2.2, Sc = 0,75, r =  -0-6, X = 0.6 

(SV 
1 

U - 
rl 5 P u1 u1 

-8.297 -3 0 279 0 993 0.250 0,068 

0.0;; 
-5 0 897 -2 331 0 950 0,256 
-5.097 -2.015 0.914 0.263 0.038 

-4.297 -1.698 0.861 0,276 -- 
-3 497 -1.382 e T89 0.300 -0.022 
-2.697 -1.066 0.700 0 0 339 
-1.897 -0.750 0,600 0,403 -0.127 
-1.097 -0 0 434 0.500 0 0 497 
-0.297 -0 117 0.411 0 ., 622 -0.216 
0 0 0 a 673 -- 

0,691 -0.218 
0 903 0 357 0.317 0.823 
1.703 0 673 0.281 0.922 -0 143 

2 503 0 989 0.262 0 a 974 
1.306 0.254 0.994 -0.078 3.303 

3.703 1.464 0.252 0 0 997 
4.503 1.780 0,250 1.000 -0 070 

-7 0 497 -2.963 c 986 0.251 
-- -60 697 -2.647 0 973 0.253 

-- 
-- 

-- fO. 103 0.041 0.3;4 

-- 
-- 



77 5 P 
U 
u1 
- 

-10 877 -4.053 0 9 994 0.111 0,181 
-10.077 -3 754 0 990 0.112 -- 
-9 277 -3.456 0.984 0.113 0.177 -8 477 -30 158 0 973 0.114 -- 

-6.877 -2.562 0 0*936 0, 121 -- 
-5 277 -1.966 0.851 0,141 -- 

-1,668 0.805 0,161 0 073 -4.477 
-3 677 -1.370 0 9 735 0-193 -- 
-2.877 -1.072 0.654 0.243 -0.037 
-2.077 -0.774 0 566 0 319 -- 
-1.277 -0.476 0 9 479 0 426 -0 172 
-0.477 -0.178 0.401 0 565 -- 
-0.077 -0.029 0.358 0.642 -0.225 

1.123 0.418 0.296 0 9 853 -- 
2*723 1.015 0.258 0.982 -- 

-7.677 -2.860 0.958 0.116 0.165 

-6.077 -2 264 0.904 0.128 0 136 

+O .323 0.120 0 9 339 0.718 -0.222 

1.923 0.715 0.270 0.941 -0,138 

39523 10 313 0.252 0.996 -0.087 

3.923 1.462 0.251 0 e 998 -- 
4.723 1,760 0.250 1.000 -0 082 



Table B2.4, Sc = 0.75, r = -0.75, 1 = 0.75 

77 5 P 
uv 
u1 
- 

-10.047 -3.780 0 , 984 0,143 0.084 
-9.247 -3 9 479 0 9 973 0,144 -- 
-8.447 -3 178 0.956 0,145 0.078 

-6.847 -2.576 0 893 0.152 0.058 
-- -7.647 -2.877 0 930 0 ., 148 

-- 0.842 0 159 
0.170 0.016 
0.190 

-3.647 -1.372 0.601 0.221 -0 066 
-- -10 97 -20273 0.775 

-6.047 
-5.247 
-4 0 447 -1.673 0 694 

-2 ., 847 -1.071 0.502 0.270 -- 

-1.247 -0 469 0.318 0 e 455 
-0.447 -0.168 0.250 0 .a 597 

-2.047 -0 e 770 0.405 0,345 -0.195 
-0 308 

-- 0 e 680 -- 

-- 
-- -0.047 -0.018 0.223 0.674 

0.00 0.0 

+O e 133 0.201 0.751 -0.312 0 353 
0 879 
0.956 -0.235 0.988 -- 

1- 153 0.434 
10 953 0.735 

1.036 0.1 7 
-0.199 2 753 

1.337 0.144 0.998 4 353 1.638 0.143 1.000 -0.198 3.553 

-- E: ;it 



Table B2.5, Sc = 0.5, r = -0.6, = 1/3 

77 5 P 

-6 e 000 - .2 
-3.6 
-2,8 

-2.4 

-2.0 
-102 
-0.4 
-0.0 
0.4 

1.2 
2.0 
3.8 
4.4 
30 6 

-2 0 598 

-0 866 
-0.520 
-0.173 

0 , O O  
+O 173 

0.520 
0 866 
1.2E 
1.559 
1- 905 

0 e 968 
0.940 

0.828 
0.742 

0.894 

0.643 
0.542 
0 451 
0.412 
0 378 

0 325 
0 . 290 
0.269 
0.258 
0 0 253 

0.500 
0.502 
0 9 505 
0.514 
0 0 534 

0 0 573 
0 637 
0.724 
0.774 
0.823 

0.908 
0 963 
0.989 
0.997 
1.000 

0.020 

0 0 009 

-0.034 

-- 
-- 

-- 
-0.118 
-0.147 
-0 148 

-- 



Table B2.6, S c  = 0.5, r =  -0~6, = 0.6 

rl 5 P uv 
u1 
- 

-8.206 -3 243 0 970 0.250 0.124 

0 116 
-- -7.406 -2 927 0 952 0.251 

-6.606 -2 0 611 0.924 0.253 
-5.806 -2 -295 0.886 0.258 
-5 006 -1.979 0.834 0.267 0,085 

-- 

-4.206 -1.662 0 9 769 0.285 -- 
-2.606 -1.030 0.609 0.374 
-1.806 -0 714 0 0 525 0 9 459 
-1.006 -0.398 0.447 0 575 

-3.406 -1.346 0.692 0.318 0 003 

-0.136 
-- 
-- 

-0.230 -- -0 e 206 -0 081 0.382 0 9 709 

0 393 0.311 0 885 

0 0 0.742 

0 0 994 
0.774 -0.231 -- +O. 194 +O 077 0.354 

0.954 -0.169 1.794 0 0 709 0.283 

1.025 0.265 0 e 986 -- 
1.342 0.256 0 997 
1.658 0 252 1.000 -0.126 

-0 130 2 9 594 
3.394 
4.194 
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Table B2.7, Sc = 0.5, I?= -0.6, X = 0.8 

77 5 P 

- 10.338 -3.852 0,966 0.111 0.146 
-9 9 538 -3 9 554 0 * 954 0.112 
-8.738 -30256 0 937 0 113 0.24; 
-7 938 -,2.958 0.915 0.115 -- 
-7.138 -2 0 659 0 885 0.118 0.226 

-6.338 
- 0538 -?. 738 
-3 938 
-3 138 

-2.338 
-1,538 
-0.738 
+o. 062 
0.862 

1.662 
2.462 

4.462 
3.662 

-2 0 361 
-2 0 063 
-1.765 
-1.467 
-1.169 

-0 871 
-0 573 
-0 0 275 
0.023 
0.321 

0.619 

1.662 
0.917 
1.364 

0 847 
0 799 
0 743 
0 0 679 
0 609 

0 283 
0.267 
00255 
0.252 

0 0 325 -0.061 
0 0 439 -- 
0.580 -0.202 

-0.221 0 729 
0 857 -- 

0.941 -0.242 

10000 -0 D 112 

0.981 -- 
0.998 -- 



Table ~2.8, Sc = 0.5, r =  -0.75, A = 0.75 

rl 5 P 

-9.662 
-8.862 
-8 062 

-6.462 
-7.263 

- -662 
-2.862 
-4.062 

-2.462 

-1.662 

-0.462 

0 738 

1.538 
2 338 
3.138 
3.538 
4 9 338 

-3.262 

-0 862 

-0.062 

-303 -3 Y2 9 
-3.096 
-2 0 745 
-2.443 

-2.140 
- 1.838 
- 1.535 
-1.233 
-0.931 

-0.628 
-0.326 
-0 175 
-0.023 
0.279 

0.581 
0.884 
1.186 
1.337 
1.640 

0 9 937 
0.916 
0.884 
0 842 
0 , 788 

0 724 
0 ., 649 
0.984 
0.403 

0.568 

0.331 
0 270 
0.245 
0.223 
0 0 190 

0,168 
0.155 
0.198 
0.146 
0 144 

0 143 
0.144 
0.145 
0.148 
0 0 159 

0.163 
0 181 
0.211 
0 0 259 
0 335 

0.443 
0.580 
0 655 
0 728 
0 856 

0.941 
0.981 

1.000 

0,996 
0.998 

0.188 

0 a 177 

00155 

-- 
-- 

-- 
0.100 

-0 a 014 
-- 
-- 

-0.172 

-0.2118 
-0.252 

-- 

-- 

-0 e 203 -- 
-0 , 148 -- 
-0.143 



B3. Calculated Constants 

Table B3.1, Sc = 1.0 

r x CY B 

-0.2 
- 1/3 
- 1/3 
- 1/3 
-0.4 
-0.6 

-0.6 
-0.6 
-0.6 
-0 Q 75 
-0 75 
-0 9 75 
-0.8 

-0.6 
-0.6 
-0.6 
-0.75 

-0.6 
-0.6 
-0.6 
-0 75 

10 0 

0.6 
0.8 
1/3 

0.6 
0.8 

;$ 
0.6 
0075 
1.0 

1/3 0.6 
0.8 
0.75 

1/3 
0.6 
0.8 
0.75 

0 71613 -- 
0 70102 0.45902 
0.81388 0.67465 
0 e 97986 -- 

0 46572 0 23299 

0 71372 0 13329 

1.11705 0 28007 
1.31924 0 44697 

0 -95102 0.08065 

1.82426 0.26044 

1.41089 -- 
1.55956 o 17502 
2 01403 -- 

SC = 0.75 
o 50299 0 20387 
0 a 75568 0 40829 
0.87141 0 61171 
1.04683 0 72331 

sc = 0.5 

0.38069 0 28055 
0.56176 0 53789 
0 64492 0 76907 
0.69503 0.64307 

-0 71613 

-0 82713 
-0.46581 
-0.94054 
-0.97986 
-0 490 15 

-lo11705 
-1,44646 
-1,41089 
-0.44897 
-10 29797 
-1.82411 
-2 01403 

-0 45537 
-0 93118 
-1.54893 
-1.089~18 

-0.47090 
-0 87972 
-0.94030 
-1.17084 

-0.25344 
-0 0 20 1-97 

-0 35055 
-0.21253 

-0 44183 
-0 0 53910 

-0 32697 

-0 34648 

-0.49889 
-0.19lC46 
-0 0 51309 
-0 0 68951 
-0.71216 

-0.18745 
-0.40605 
-0 36809 
-0 58548 

-0.20418 
-0 34775 
-0 35045 
-0 44258 
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